These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 2230722)
21. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans. Brown LA; Chaffin WL Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895 [TBL] [Abstract][Full Text] [Related]
22. Morphogenesis in Candida albicans. Odds FC Crit Rev Microbiol; 1985; 12(1):45-93. PubMed ID: 3893894 [TBL] [Abstract][Full Text] [Related]
23. A mutant of Candida albicans deficient in beta-N-acetylglucosaminidase (chitobiase). Jenkinson HF; Shepherd MG J Gen Microbiol; 1987 Aug; 133(8):2097-106. PubMed ID: 3327914 [TBL] [Abstract][Full Text] [Related]
24. Variations in the response to N-acetyl-D-glucosamine by isolates of Candida albicans. Wain WH; Brayton AR; Cawson RA Mycopathologia; 1976 Jun; 58(1):27-9. PubMed ID: 778622 [No Abstract] [Full Text] [Related]
25. Germination of Candida albicans induced by proline. Dabrowa N; Taxer SS; Howard DH Infect Immun; 1976 Mar; 13(3):830-5. PubMed ID: 5375 [TBL] [Abstract][Full Text] [Related]
26. Germ tube induction in Candida albicans. Shepherd MG; Yin CY; Ram SP; Sullivan PA Can J Microbiol; 1980 Jan; 26(1):21-6. PubMed ID: 6996798 [TBL] [Abstract][Full Text] [Related]
27. Nutrient uptake by Candida albicans: the influence of cell surface mannoproteins. Braun PC Can J Microbiol; 1999 May; 45(5):353-9. PubMed ID: 10446710 [TBL] [Abstract][Full Text] [Related]
28. Involvement of heat shock proteins in Candida albicans biofilm formation. Becherelli M; Tao J; Ryder NS J Mol Microbiol Biotechnol; 2013; 23(6):396-400. PubMed ID: 23942459 [TBL] [Abstract][Full Text] [Related]
29. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
30. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans. Gopal P; Sullivan PA; Shepherd MG J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272 [TBL] [Abstract][Full Text] [Related]
31. Phosphoglycerate kinase and fructose bisphosphate aldolase of Candida albicans as new antigens recognized by human salivary IgA. Calcedo R; Ramirez-Garcia A; Abad A; Rementeria A; Pontón J; Hernando FL Rev Iberoam Micol; 2012; 29(3):172-4. PubMed ID: 21906693 [TBL] [Abstract][Full Text] [Related]
32. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. Mattia E; Carruba G; Angiolella L; Cassone A J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114 [TBL] [Abstract][Full Text] [Related]
33. Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans. Hoberg KA; Cihlar RL; Calderone RA Antimicrob Agents Chemother; 1983 Sep; 24(3):401-8. PubMed ID: 6357077 [TBL] [Abstract][Full Text] [Related]
34. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine. Hrmová M; Drobnica L Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407 [TBL] [Abstract][Full Text] [Related]
35. Purification and properties of peptides which induce germination of blastospores of Candida albicans. Chattaway FW; Wheeler PR; O'Reilly J J Gen Microbiol; 1980 Oct; 120(2):431-7. PubMed ID: 7014773 [TBL] [Abstract][Full Text] [Related]
37. Changes in the cell wall glycoprotein composition of Candida albicans associated to the inhibition of germ tube formation by EDTA. Gil ML; Casanova M; Martínez JP Arch Microbiol; 1994; 161(6):489-94. PubMed ID: 8048840 [TBL] [Abstract][Full Text] [Related]