These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 22307238)
1. Predicting kissing interactions in microRNA-target complex and assessment of microRNA activity. Cao S; Chen SJ Nucleic Acids Res; 2012 May; 40(10):4681-90. PubMed ID: 22307238 [TBL] [Abstract][Full Text] [Related]
2. Analysis of microRNA-target interactions by a target structure based hybridization model. Long D; Chan CY; Ding Y Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104 [TBL] [Abstract][Full Text] [Related]
3. STarMir Tools for Prediction of microRNA Binding Sites. Kanoria S; Rennie W; Liu C; Carmack CS; Lu J; Ding Y Methods Mol Biol; 2016; 1490():73-82. PubMed ID: 27665594 [TBL] [Abstract][Full Text] [Related]
5. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Kanak M; Alseiari M; Balasubramanian P; Addanki K; Aggarwal M; Noorali S; Kalsum A; Mahalingam K; Pace G; Panasik N; Bagasra O Appl Immunohistochem Mol Morphol; 2010 Dec; 18(6):532-45. PubMed ID: 20502318 [TBL] [Abstract][Full Text] [Related]
6. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Schmitz U; Lai X; Winter F; Wolkenhauer O; Vera J; Gupta SK Nucleic Acids Res; 2014 Jul; 42(12):7539-52. PubMed ID: 24875477 [TBL] [Abstract][Full Text] [Related]
7. Got target? Computational methods for microRNA target prediction and their extension. Min H; Yoon S Exp Mol Med; 2010 Apr; 42(4):233-44. PubMed ID: 20177143 [TBL] [Abstract][Full Text] [Related]
8. CLIP-based prediction of mammalian microRNA binding sites. Liu C; Mallick B; Long D; Rennie WA; Wolenc A; Carmack CS; Ding Y Nucleic Acids Res; 2013 Aug; 41(14):e138. PubMed ID: 23703212 [TBL] [Abstract][Full Text] [Related]
9. Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. Hong X; Hammell M; Ambros V; Cohen SM Proc Natl Acad Sci U S A; 2009 Sep; 106(35):15085-90. PubMed ID: 19706460 [TBL] [Abstract][Full Text] [Related]
10. The Role of Tertiary Structure in MicroRNA Target Recognition. Gan HH; Gunsalus KC Methods Mol Biol; 2019; 1970():43-64. PubMed ID: 30963487 [TBL] [Abstract][Full Text] [Related]
12. Identifying microRNA targets in different gene regions. Xu W; San Lucas A; Wang Z; Liu Y BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S4. PubMed ID: 25077573 [TBL] [Abstract][Full Text] [Related]
13. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Ruby JG; Stark A; Johnston WK; Kellis M; Bartel DP; Lai EC Genome Res; 2007 Dec; 17(12):1850-64. PubMed ID: 17989254 [TBL] [Abstract][Full Text] [Related]
14. A Practical Guide to miRNA Target Prediction. Akhtar MM; Micolucci L; Islam MS; Olivieri F; Procopio AD Methods Mol Biol; 2019; 1970():1-13. PubMed ID: 30963484 [TBL] [Abstract][Full Text] [Related]
15. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. Ragan C; Zuker M; Ragan MA PLoS Comput Biol; 2011 Feb; 7(2):e1001090. PubMed ID: 21390282 [TBL] [Abstract][Full Text] [Related]
16. A combined computational-experimental approach predicts human microRNA targets. Kiriakidou M; Nelson PT; Kouranov A; Fitziev P; Bouyioukos C; Mourelatos Z; Hatzigeorgiou A Genes Dev; 2004 May; 18(10):1165-78. PubMed ID: 15131085 [TBL] [Abstract][Full Text] [Related]