These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22307239)
1. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments. Micsinai M; Parisi F; Strino F; Asp P; Dynlacht BD; Kluger Y Nucleic Acids Res; 2012 May; 40(9):e70. PubMed ID: 22307239 [TBL] [Abstract][Full Text] [Related]
2. CMT: a constrained multi-level thresholding approach for ChIP-Seq data analysis. Rezaeian I; Rueda L PLoS One; 2014; 9(4):e93873. PubMed ID: 24736605 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection. Eder T; Grebien F Genome Biol; 2022 May; 23(1):119. PubMed ID: 35606795 [TBL] [Abstract][Full Text] [Related]
4. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. Shen L; Shao NY; Liu X; Maze I; Feng J; Nestler EJ PLoS One; 2013; 8(6):e65598. PubMed ID: 23762400 [TBL] [Abstract][Full Text] [Related]
5. seqMINER: an integrated ChIP-seq data interpretation platform. Ye T; Krebs AR; Choukrallah MA; Keime C; Plewniak F; Davidson I; Tora L Nucleic Acids Res; 2011 Mar; 39(6):e35. PubMed ID: 21177645 [TBL] [Abstract][Full Text] [Related]
6. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data. Qin ZS; Yu J; Shen J; Maher CA; Hu M; Kalyana-Sundaram S; Yu J; Chinnaiyan AM BMC Bioinformatics; 2010 Jul; 11():369. PubMed ID: 20598134 [TBL] [Abstract][Full Text] [Related]
7. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Mundade R; Ozer HG; Wei H; Prabhu L; Lu T Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472 [TBL] [Abstract][Full Text] [Related]
8. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Chen L; Wang C; Qin ZS; Wu H Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068 [TBL] [Abstract][Full Text] [Related]
9. A signal processing approach for enriched region detection in RNA polymerase II ChIP-seq data. Han Z; Tian L; Pécot T; Huang T; Machiraju R; Huang K BMC Bioinformatics; 2012 Mar; 13 Suppl 2(Suppl 2):S2. PubMed ID: 22536865 [TBL] [Abstract][Full Text] [Related]
10. Characterising ChIP-seq binding patterns by model-based peak shape deconvolution. Mendoza-Parra MA; Nowicka M; Van Gool W; Gronemeyer H BMC Genomics; 2013 Nov; 14(1):834. PubMed ID: 24279297 [TBL] [Abstract][Full Text] [Related]
11. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Liu T Methods Mol Biol; 2014; 1150():81-95. PubMed ID: 24743991 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data. Xing H; Mo Y; Liao W; Zhang MQ PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240 [TBL] [Abstract][Full Text] [Related]
14. Is this the right normalization? A diagnostic tool for ChIP-seq normalization. Angelini C; Heller R; Volkinshtein R; Yekutieli D BMC Bioinformatics; 2015 May; 16():150. PubMed ID: 25957089 [TBL] [Abstract][Full Text] [Related]
15. Impact of sequencing depth in ChIP-seq experiments. Jung YL; Luquette LJ; Ho JW; Ferrari F; Tolstorukov M; Minoda A; Issner R; Epstein CB; Karpen GH; Kuroda MI; Park PJ Nucleic Acids Res; 2014 May; 42(9):e74. PubMed ID: 24598259 [TBL] [Abstract][Full Text] [Related]
16. A comparison of peak callers used for DNase-Seq data. Koohy H; Down TA; Spivakov M; Hubbard T PLoS One; 2014; 9(5):e96303. PubMed ID: 24810143 [TBL] [Abstract][Full Text] [Related]
17. BroadPeak: a novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets. Wang J; Lunyak VV; Jordan IK Bioinformatics; 2013 Feb; 29(4):492-3. PubMed ID: 23300134 [TBL] [Abstract][Full Text] [Related]