BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 22307500)

  • 1. Impact of each individual component of the mutated PTS(Nag) on glucose uptake and phosphorylation in Ralstonia eutropha G⁺1.
    Raberg M; Kaddor C; Kusian B; Stahlhut G; Budinova R; Kolev N; Bowien B; Steinbüchel A
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):735-44. PubMed ID: 22307500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and transcriptomic elucidation of the mutant ralstonia eutropha G+1 with regard to glucose utilization.
    Raberg M; Peplinski K; Heiss S; Ehrenreich A; Voigt B; Döring C; Bömeke M; Hecker M; Steinbüchel A
    Appl Environ Microbiol; 2011 Mar; 77(6):2058-70. PubMed ID: 21278273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.
    Orita I; Iwazawa R; Nakamura S; Fukui T
    J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine.
    Wang F; Xiao X; Saito A; Schrempf H
    Mol Genet Genomics; 2002 Nov; 268(3):344-51. PubMed ID: 12436256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of the hprK gene in Ralstonia eutropha H16.
    Krausse D; Hunold K; Kusian B; Lenz O; Stülke J; Bowien B; Deutscher J
    J Mol Microbiol Biotechnol; 2009; 17(3):146-52. PubMed ID: 19672046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid selection of glucose-utilizing variants of the polyhydroxyalkanoate producer Ralstonia eutropha H16 by incubation with high substrate levels.
    Franz A; Rehner R; Kienle A; Grammel H
    Lett Appl Microbiol; 2012 Jan; 54(1):45-51. PubMed ID: 22044343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the core components of the phosphoenolpyruvate-carbohydrate phosphotransferase system, HPr and EI, on differential protein expression in Ralstonia eutropha H16.
    Kaddor C; Voigt B; Hecker M; Steinbüchel A
    J Proteome Res; 2012 Jul; 11(7):3624-36. PubMed ID: 22630130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16.
    Kaddor C; Steinbüchel A
    Appl Environ Microbiol; 2011 Jun; 77(11):3582-90. PubMed ID: 21478317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16.
    Karstens K; Zschiedrich CP; Bowien B; Stülke J; Görke B
    Microbiology (Reading); 2014 Apr; 160(Pt 4):711-722. PubMed ID: 24515609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex.
    Raberg M; Bechmann J; Brandt U; Schlüter J; Uischner B; Voigt B; Hecker M; Steinbüchel A
    Appl Environ Microbiol; 2011 Apr; 77(7):2254-63. PubMed ID: 21296938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state.
    Plumbridge JA
    Mol Microbiol; 1991 Aug; 5(8):2053-62. PubMed ID: 1766379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR.
    Joyet P; Derkaoui M; Poncet S; Deutscher J
    Mol Microbiol; 2010 Jun; 76(5):1279-94. PubMed ID: 20444094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physiological and biochemical characteristics and capacity for polyhydroxyalkanoates synthesis in a glucose-utilizing strain of hydrogen-oxidizing bacteria, Ralstonia eutropha B8562].
    Volova TG; Kozhevnikov IV; Dolgopolova IuB; Trusova MIu; Kalacheva GS; Aref'eva IuV
    Mikrobiologiia; 2005; 74(6):788-94. PubMed ID: 16400989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16.
    Fleige C; Kroll J; Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):769-76. PubMed ID: 21519932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated poly(3-hydroxybutyrate) synthesis in mutants of Ralstonia eutropha H16 defective in lipopolysaccharide biosynthesis.
    Brandt U; Raberg M; Voigt B; Hecker M; Steinbüchel A
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):471-83. PubMed ID: 22314517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polythioester synthesis in Ralstonia eutropha H16: novel insights into 3,3'-thiodipropionic acid and 3,3'-dithiodipropionic acid catabolism.
    Doberstein C; Grote J; Wübbeler JH; Steinbüchel A
    J Biotechnol; 2014 Aug; 184():187-98. PubMed ID: 24953213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition.
    Pennetier C; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation effects of a conserved alanine (Ala510) in type I polyhydroxyalkanoate synthase from Ralstonia eutropha on polyester biosynthesis.
    Tsuge T; Saito Y; Narike M; Muneta K; Normi YM; Kikkawa Y; Hiraishi T; Doi Y
    Macromol Biosci; 2004 Oct; 4(10):963-70. PubMed ID: 15508175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes.
    Aké FM; Joyet P; Deutscher J; Milohanic E
    Mol Microbiol; 2011 Jul; 81(1):274-93. PubMed ID: 21564334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.