BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22307624)

  • 1. Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression.
    Drake JM; Graham NA; Stoyanova T; Sedghi A; Goldstein AS; Cai H; Smith DA; Zhang H; Komisopoulou E; Huang J; Graeber TG; Witte ON
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1643-8. PubMed ID: 22307624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.
    Mahajan NP; Liu Y; Majumder S; Warren MR; Parker CE; Mohler JL; Earp HS; Whang YE
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8438-43. PubMed ID: 17494760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting tyrosine kinases and autophagy in prostate cancer.
    Kung HJ
    Horm Cancer; 2011 Feb; 2(1):38-46. PubMed ID: 21350583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential tyrosine phosphorylation/activation of oncogenic proline-directed protein kinase F(A)/GSK-3alpha in well and poorly differentiated human prostate carcinoma cells.
    Yang CC; Hsu CP; Sheu JC; Mai XY; Yang SD
    J Protein Chem; 1998 May; 17(4):329-35. PubMed ID: 9619586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets.
    Drake JM; Graham NA; Lee JK; Stoyanova T; Faltermeier CM; Sud S; Titz B; Huang J; Pienta KJ; Graeber TG; Witte ON
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):E4762-9. PubMed ID: 24248375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Most of the substrates of oncogenic viral tyrosine protein kinases can be phosphorylated by cellular tyrosine protein kinases in normal cells.
    Kamps MP; Sefton BM
    Oncogene Res; 1988 Sep; 3(2):105-15. PubMed ID: 2465525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox.
    Mahajan NP; Whang YE; Mohler JL; Earp HS
    Cancer Res; 2005 Nov; 65(22):10514-23. PubMed ID: 16288044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells.
    Dai B; Chen H; Guo S; Yang X; Linn DE; Sun F; Li W; Guo Z; Xu K; Kim O; Kong X; Melamed J; Qiu S; Chen H; Qiu Y
    Cancer Res; 2010 Jul; 70(13):5587-96. PubMed ID: 20570899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry-Based Phosphotyrosine Proteomics.
    Haake SM; Li J; Bai Y; Kinose F; Fang B; Welsh EA; Zent R; Dhillon J; Pow-Sang JM; Chen YA; Koomen JM; Rathmell WK; Fishman M; Haura EB
    Clin Cancer Res; 2016 Nov; 22(22):5605-5616. PubMed ID: 27220961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases.
    Liu Y; Karaca M; Zhang Z; Gioeli D; Earp HS; Whang YE
    Oncogene; 2010 Jun; 29(22):3208-16. PubMed ID: 20383201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells.
    Weiss-Messer E; Merom O; Adi A; Karry R; Bidosee M; Ber R; Kaploun A; Stein A; Barkey RJ
    Mol Cell Endocrinol; 2004 May; 220(1-2):109-23. PubMed ID: 15196705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.
    Ferrando IM; Chaerkady R; Zhong J; Molina H; Jacob HK; Herbst-Robinson K; Dancy BM; Katju V; Bose R; Zhang J; Pandey A; Cole PA
    Mol Cell Proteomics; 2012 Aug; 11(8):355-69. PubMed ID: 22499769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of hormone escape in a human prostate cancer model depends on therapy modalities and can be reduced by tyrosine kinase inhibitors.
    Guyader C; Céraline J; Gravier E; Morin A; Michel S; Erdmann E; de Pinieux G; Cabon F; Bergerat JP; Poupon MF; Oudard S
    PLoS One; 2012; 7(8):e42252. PubMed ID: 22879924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of nonreceptor tyrosine kinase Bmx/Etk mediated by phosphoinositide 3-kinase, epidermal growth factor receptor, and ErbB3 in prostate cancer cells.
    Jiang X; Borgesi RA; McKnight NC; Kaur R; Carpenter CL; Balk SP
    J Biol Chem; 2007 Nov; 282(45):32689-98. PubMed ID: 17823122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases.
    Calalb MB; Polte TR; Hanks SK
    Mol Cell Biol; 1995 Feb; 15(2):954-63. PubMed ID: 7529876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression.
    Graff JR; Konicek BW; McNulty AM; Wang Z; Houck K; Allen S; Paul JD; Hbaiu A; Goode RG; Sandusky GE; Vessella RL; Neubauer BL
    J Biol Chem; 2000 Aug; 275(32):24500-5. PubMed ID: 10827191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT.
    Zheng Y; Gierut J; Wang Z; Miao J; Asara JM; Tyner AL
    Oncogene; 2013 Sep; 32(36):4304-12. PubMed ID: 23027128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.
    Wu W; Yang Q; Fung KM; Humphreys MR; Brame LS; Cao A; Fang YT; Shih PT; Kropp BP; Lin HK
    Mol Cell Endocrinol; 2014 Mar; 383(1-2):69-79. PubMed ID: 24296312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK.
    Lee LF; Louie MC; Desai SJ; Yang J; Chen HW; Evans CP; Kung HJ
    Oncogene; 2004 Mar; 23(12):2197-205. PubMed ID: 14767470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous-cell carcinoma.
    Syed N; Barbhuiya MA; Pinto SM; Nirujogi RS; Renuse S; Datta KK; Khan AA; Srikumar K; Prasad TS; Kumar MV; Kumar RV; Chatterjee A; Pandey A; Gowda H
    Proteomics; 2015 Jan; 15(2-3):374-82. PubMed ID: 25366905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.