These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22307645)

  • 41. Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system.
    Wagner A; Tobimatsu Y; Phillips L; Flint H; Geddes B; Lu F; Ralph J
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6218-23. PubMed ID: 25902506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.
    Patten AM; Jourdes M; Cardenas CL; Laskar DD; Nakazawa Y; Chung BY; Franceschi VR; Davin LB; Lewis NG
    Mol Biosyst; 2010 Mar; 6(3):499-515. PubMed ID: 20174679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.
    Chen Z; Sun X; Li Y; Yan Y; Yuan Q
    Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification.
    Tobimatsu Y; Davidson CL; Grabber JH; Ralph J
    Biomacromolecules; 2011 May; 12(5):1752-61. PubMed ID: 21410250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.
    Harman-Ware AE; Happs RM; Davison BH; Davis MF
    Biotechnol Biofuels; 2017; 10():281. PubMed ID: 29213321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis.
    Ye ZH; Zhong R; Morrison WH; Himmelsbach DS
    Phytochemistry; 2001 Aug; 57(7):1177-85. PubMed ID: 11430990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.
    van Parijs FR; Morreel K; Ralph J; Boerjan W; Merks RM
    Plant Physiol; 2010 Jul; 153(3):1332-44. PubMed ID: 20472753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase.
    Marita JM; Ralph J; Hatfield RD; Guo D; Chen F; Dixon RA
    Phytochemistry; 2003 Jan; 62(1):53-65. PubMed ID: 12475619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemistry and molecular biology of lignification.
    Boudet AM; Lapierre C; Grima-Pettenati J
    New Phytol; 1995 Feb; 129(2):203-236. PubMed ID: 33874561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AtABCG29 is a monolignol transporter involved in lignin biosynthesis.
    Alejandro S; Lee Y; Tohge T; Sudre D; Osorio S; Park J; Bovet L; Lee Y; Geldner N; Fernie AR; Martinoia E
    Curr Biol; 2012 Jul; 22(13):1207-12. PubMed ID: 22704988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed.
    Fang L; Xu X; Li J; Zheng F; Li M; Yan J; Li Y; Zhang X; Li L; Ma G; Zhang A; Lv F; Wu K; Zeng S
    BMC Genomics; 2020 Jul; 21(1):524. PubMed ID: 32727352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I.
    Onnerud H; Zhang L; Gellerstedt G; Henriksson G
    Plant Cell; 2002 Aug; 14(8):1953-62. PubMed ID: 12172033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility.
    Lam PY; Tobimatsu Y; Takeda Y; Suzuki S; Yamamura M; Umezawa T; Lo C
    Plant Physiol; 2017 Jun; 174(2):972-985. PubMed ID: 28385728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: capillary zone electrophoresis study of pH effect.
    Fournand D; Cathala B; Lapierre C
    Phytochemistry; 2003 Jan; 62(2):139-46. PubMed ID: 12482448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in modifying lignin for enhanced biofuel production.
    Simmons BA; Loqué D; Ralph J
    Curr Opin Plant Biol; 2010 Jun; 13(3):313-20. PubMed ID: 20359939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce.
    Warinowski T; Koutaniemi S; Kärkönen A; Sundberg I; Toikka M; Simola LK; Kilpeläinen I; Teeri TH
    Front Plant Sci; 2016; 7():1523. PubMed ID: 27803704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.