These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22307966)
41. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening. Wang RH; Yuan XY; Meng LH; Zhu BZ; Zhu HL; Luo YB; Fu DQ PLoS One; 2016; 11(12):e0168287. PubMed ID: 27973616 [TBL] [Abstract][Full Text] [Related]
42. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. Prieto C; Risueño A; Fontanillo C; De las Rivas J PLoS One; 2008; 3(12):e3911. PubMed ID: 19081792 [TBL] [Abstract][Full Text] [Related]
43. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Shinozaki Y; Nicolas P; Fernandez-Pozo N; Ma Q; Evanich DJ; Shi Y; Xu Y; Zheng Y; Snyder SI; Martin LBB; Ruiz-May E; Thannhauser TW; Chen K; Domozych DS; Catalá C; Fei Z; Mueller LA; Giovannoni JJ; Rose JKC Nat Commun; 2018 Jan; 9(1):364. PubMed ID: 29371663 [TBL] [Abstract][Full Text] [Related]
44. Identification of candidate genes for phenolics accumulation in tomato fruit. Di Matteo A; Ruggieri V; Sacco A; Rigano MM; Carriero F; Bolger A; Fernie AR; Frusciante L; Barone A Plant Sci; 2013 May; 205-206():87-96. PubMed ID: 23498866 [TBL] [Abstract][Full Text] [Related]
45. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273 [TBL] [Abstract][Full Text] [Related]
46. Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Urbanczyk-Wochniak E; Usadel B; Thimm O; Nunes-Nesi A; Carrari F; Davy M; Bläsing O; Kowalczyk M; Weicht D; Polinceusz A; Meyer S; Stitt M; Fernie AR Plant Mol Biol; 2006 Mar; 60(5):773-92. PubMed ID: 16649112 [TBL] [Abstract][Full Text] [Related]
47. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Smita S; Rajwanshi R; Lenka SK; Katiyar A; Chinnusamy V; Bansal KC J Genet; 2013 Dec; 92(3):363-8. PubMed ID: 24371159 [TBL] [Abstract][Full Text] [Related]
48. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. Costa F; Alba R; Schouten H; Soglio V; Gianfranceschi L; Serra S; Musacchi S; Sansavini S; Costa G; Fei Z; Giovannoni J BMC Plant Biol; 2010 Oct; 10():229. PubMed ID: 20973957 [TBL] [Abstract][Full Text] [Related]
49. Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Zhang T; Liang J; Wang M; Li D; Liu Y; Chen THH; Yang X Plant Sci; 2019 Mar; 280():355-366. PubMed ID: 30824015 [TBL] [Abstract][Full Text] [Related]
50. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. Lima-Silva V; Rosado A; Amorim-Silva V; Muñoz-Mérida A; Pons C; Bombarely A; Trelles O; Fernández-Muñoz R; Granell A; Valpuesta V; Botella MÁ BMC Genomics; 2012 May; 13():187. PubMed ID: 22583865 [TBL] [Abstract][Full Text] [Related]
51. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. Almeida J; Azevedo Mda S; Spicher L; Glauser G; vom Dorp K; Guyer L; del Valle Carranza A; Asis R; de Souza AP; Buckeridge M; Demarco D; Bres C; Rothan C; Peres LE; Hörtensteiner S; Kessler F; Dörmann P; Carrari F; Rossi M J Exp Bot; 2016 Feb; 67(3):919-34. PubMed ID: 26596763 [TBL] [Abstract][Full Text] [Related]
52. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Ficklin SP; Luo F; Feltus FA Plant Physiol; 2010 Sep; 154(1):13-24. PubMed ID: 20668062 [TBL] [Abstract][Full Text] [Related]
53. Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit. Di Matteo A; Sacco A; De Stefano R; Frusciante L; Barone A Biochem Genet; 2012 Dec; 50(11-12):908-21. PubMed ID: 22911514 [TBL] [Abstract][Full Text] [Related]
54. Identification, cloning and characterization of the tomato TCP transcription factor family. Parapunova V; Busscher M; Busscher-Lange J; Lammers M; Karlova R; Bovy AG; Angenent GC; de Maagd RA BMC Plant Biol; 2014 Jun; 14():157. PubMed ID: 24903607 [TBL] [Abstract][Full Text] [Related]
55. Key genes and functional coexpression modules involved in the pathogenesis of systemic lupus erythematosus. Yan S; Wang W; Gao G; Cheng M; Wang X; Wang Z; Ma X; Chai C; Xu D J Cell Physiol; 2018 Nov; 233(11):8815-8825. PubMed ID: 29806703 [TBL] [Abstract][Full Text] [Related]
56. Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Wang Z; Guhling O; Yao R; Li F; Yeats TH; Rose JK; Jetter R Plant Physiol; 2011 Jan; 155(1):540-52. PubMed ID: 21059824 [TBL] [Abstract][Full Text] [Related]
57. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. Dong T; Chen G; Tian S; Xie Q; Yin W; Zhang Y; Hu Z PLoS One; 2014; 9(4):e95559. PubMed ID: 24751940 [TBL] [Abstract][Full Text] [Related]
58. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Sravankumar T; Akash ; Naik N; Kumar R Plant Mol Biol; 2018 Nov; 98(4-5):455-469. PubMed ID: 30367324 [TBL] [Abstract][Full Text] [Related]
59. Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. Vasav AP; Barvkar VT BMC Genomics; 2019 Feb; 20(1):116. PubMed ID: 30732561 [TBL] [Abstract][Full Text] [Related]
60. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]