These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22308103)

  • 21. Fabrication of alginate-based multi-crosslinked biomembranes for direct methanol fuel cell application.
    Wang B; Han X; Wang Y; Kang L; Yang Y; Cui L; Zhong S; Cui X
    Carbohydr Polym; 2023 Jan; 300():120261. PubMed ID: 36372489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.
    Hara N; Ohashi H; Ito T; Yamaguchi T
    J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorinated imidazoles as proton carriers for water-free fuel cell membranes.
    Deng WQ; Molinero V; Goddard WA
    J Am Chem Soc; 2004 Dec; 126(48):15644-5. PubMed ID: 15571377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Modulated Cationic and Anionic Transport across Protein Biopolymers*.
    Burnstine-Townley A; Mondal S; Agam Y; Nandi R; Amdursky N
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24676-24685. PubMed ID: 34492153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells.
    Fernández JL; Raghuveer V; Manthiram A; Bard AJ
    J Am Chem Soc; 2005 Sep; 127(38):13100-1. PubMed ID: 16173710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the role of biopolymer clusters in MBR membrane fouling using flash freezing and environmental scanning electron microscopy.
    Wang XM; Sun FY; Li XY
    Chemosphere; 2011 Nov; 85(7):1154-9. PubMed ID: 21924757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance.
    Choi MJ; Chae KJ; Ajayi FF; Kim KY; Yu HW; Kim CW; Kim IS
    Bioresour Technol; 2011 Jan; 102(1):298-303. PubMed ID: 20659795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New approach for characterization of gelatin biopolymer films using proton behavior determined by low field 1H NMR spectrometry.
    Kim YT; Hong YS; Kimmel RM; Rho JH; Lee CH
    J Agric Food Chem; 2007 Dec; 55(26):10678-84. PubMed ID: 18052122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR studies of hydration in low water content biopolymer systems.
    Belton PS
    Magn Reson Chem; 2011 Dec; 49 Suppl 1():S127-32. PubMed ID: 22290703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycoproteins as a Platform for Making Proton-Conductive Free-Standing Biopolymers.
    Yang Z; Sarkar AK; Amdursky N
    Biomacromolecules; 2023 Mar; 24(3):1111-1120. PubMed ID: 36787188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength.
    Ji E; Moon H; Piao J; Ha PT; An J; Kim D; Woo JJ; Lee Y; Moon SH; Rittmann BE; Chang IS
    Biosens Bioelectron; 2011 Mar; 26(7):3266-71. PubMed ID: 21255993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton transfer of excited 7-azaindole in reverse-micellar methanol nanopools: even faster than in bulk methanol.
    Kwon OH; Jang DJ
    J Phys Chem B; 2005 Apr; 109(16):8049-52. PubMed ID: 16851940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.
    Hou B; Sun J; Hu YY
    Bioresour Technol; 2011 Mar; 102(6):4433-8. PubMed ID: 21251817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications.
    Horan JL; Genupur A; Ren H; Sikora BJ; Kuo MC; Meng F; Dec SF; Haugen GM; Yandrasits MA; Hamrock SJ; Frey MH; Herring AM
    ChemSusChem; 2009; 2(3):226-9. PubMed ID: 19170068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pressure on the proton transfer rate from a photoacid to a solvent. 4. Photoacids in methanol.
    Genosar L; Lasitza T; Gepshtein R; Leiderman P; Koifman N; Huppert D
    J Phys Chem A; 2005 Jun; 109(21):4852-61. PubMed ID: 16833830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amphiphilic character of the hydrated proton in methanol-water solutions.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Apr; 110(14):7085-9. PubMed ID: 16599467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.
    Robertson NJ; Kostalik HA; Clark TJ; Mutolo PF; Abruña HD; Coates GW
    J Am Chem Soc; 2010 Mar; 132(10):3400-4. PubMed ID: 20178312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4,5-dicyano-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells.
    Subbaraman R; Ghassemi H; Zawodzinski TA
    J Am Chem Soc; 2007 Feb; 129(8):2238-9. PubMed ID: 17266308
    [No Abstract]   [Full Text] [Related]  

  • 40. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.