BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 22308393)

  • 1. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):E358-67. PubMed ID: 23302692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of the P4B ATPase lipid flippase activity.
    Bai L; Jain BK; You Q; Duan HD; Takar M; Graham TR; Li H
    Nat Commun; 2021 Oct; 12(1):5963. PubMed ID: 34645814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid flipping involves a central cavity in P4 ATPases.
    Jensen MS; Costa SR; Duelli AS; Andersen PA; Poulsen LR; Stanchev LD; Gourdon P; Palmgren M; Günther Pomorski T; López-Marqués RL
    Sci Rep; 2017 Dec; 7(1):17621. PubMed ID: 29247234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function.
    Natarajan P; Wang J; Hua Z; Graham TR
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10614-9. PubMed ID: 15249668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs.
    Roland BP; Naito T; Best JT; Arnaiz-Yépez C; Takatsu H; Yu RJ; Shin HW; Graham TR
    J Biol Chem; 2019 Feb; 294(6):1794-1806. PubMed ID: 30530492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast.
    Zhou X; Graham TR
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16586-91. PubMed ID: 19805341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport mechanism of P4 ATPase phosphatidylcholine flippases.
    Bai L; You Q; Jain BK; Duan HD; Kovach A; Graham TR; Li H
    Elife; 2020 Dec; 9():. PubMed ID: 33320091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport.
    Xu P; Baldridge RD; Chi RJ; Burd CG; Graham TR
    J Cell Biol; 2013 Sep; 202(6):875-86. PubMed ID: 24019533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The putative aminophospholipid translocases, DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma membrane of Saccharomyces cerevisiae.
    Stevens HC; Malone L; Nichols JW
    J Biol Chem; 2008 Dec; 283(50):35060-9. PubMed ID: 18931395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast.
    Hachiro T; Yamamoto T; Nakano K; Tanaka K
    J Biol Chem; 2013 Feb; 288(5):3594-608. PubMed ID: 23250744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW; Takatsu H
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase.
    Roland BP; Graham TR
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4460-6. PubMed ID: 27432949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and autoregulation of a P4-ATPase lipid flippase.
    Timcenko M; Lyons JA; Januliene D; Ulstrup JJ; Dieudonné T; Montigny C; Ash MR; Karlsen JL; Boesen T; Kühlbrandt W; Lenoir G; Moeller A; Nissen P
    Nature; 2019 Jul; 571(7765):366-370. PubMed ID: 31243363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity.
    Jain BK; Roland BP; Graham TR
    J Biol Chem; 2020 Dec; 295(52):17997-18009. PubMed ID: 33060204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.