These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22308407)

  • 1. The adenylyltransferase domain of bacterial Pnkp defines a unique RNA ligase family.
    Smith P; Wang LK; Nair PA; Shuman S
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2296-301. PubMed ID: 22308407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of bacterial protein Hen1 activating the ligase activity of bacterial protein Pnkp for RNA repair.
    Wang P; Chan CM; Christensen D; Zhang C; Selvadurai K; Huang RH
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13248-53. PubMed ID: 22847431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanism of the polynucleotide kinase component of the bacterial Pnkp-Hen1 RNA repair system.
    Wang LK; Das U; Smith P; Shuman S
    RNA; 2012 Dec; 18(12):2277-86. PubMed ID: 23118415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanism of the 2',3' phosphatase component of the bacterial Pnkp-Hen1 RNA repair system.
    Wang LK; Smith P; Shuman S
    Nucleic Acids Res; 2013 Jun; 41(11):5864-73. PubMed ID: 23595150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.
    Raymond A; Shuman S
    Nucleic Acids Res; 2007; 35(3):839-49. PubMed ID: 17204483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase.
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13868-73. PubMed ID: 26512110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi.
    Unciuleac MC; Shuman S
    RNA; 2015 May; 21(5):824-32. PubMed ID: 25740837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a baculovirus enzyme with RNA ligase, polynucleotide 5'-kinase, and polynucleotide 3'-phosphatase activities.
    Martins A; Shuman S
    J Biol Chem; 2004 Apr; 279(18):18220-31. PubMed ID: 14747466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK; Ho CK; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(32):29454-62. PubMed ID: 12766156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase.
    Keppetipola N; Shuman S
    RNA; 2006 Jan; 12(1):73-82. PubMed ID: 16301605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-guided mutational analysis of T4 RNA ligase 1.
    Wang LK; Schwer B; Shuman S
    RNA; 2006 Dec; 12(12):2126-34. PubMed ID: 17068206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An end-healing enzyme from Clostridium thermocellum with 5' kinase, 2',3' phosphatase, and adenylyltransferase activities.
    Martins A; Shuman S
    RNA; 2005 Aug; 11(8):1271-80. PubMed ID: 15987807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation.
    Unciuleac MC; Goldgur Y; Shuman S
    Nucleic Acids Res; 2020 Jun; 48(10):5603-5615. PubMed ID: 32315072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of RNA ligase.
    Ho CK; Wang LK; Lima CD; Shuman S
    Structure; 2004 Feb; 12(2):327-39. PubMed ID: 14962393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2592-2597. PubMed ID: 28223499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site mapping and substrate specificity of bacterial Hen1, a manganese-dependent 3' terminal RNA ribose 2'O-methyltransferase.
    Jain R; Shuman S
    RNA; 2011 Mar; 17(3):429-38. PubMed ID: 21205839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end.
    Ghosh S; Shuman S
    RNA; 2024 Sep; 30(10):1306-1314. PubMed ID: 39013577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward.
    Nandakumar J; Shuman S; Lima CD
    Cell; 2006 Oct; 127(1):71-84. PubMed ID: 17018278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair.
    Wang LK; Nandakumar J; Schwer B; Shuman S
    RNA; 2007 Aug; 13(8):1235-44. PubMed ID: 17585047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.