These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 22308958)

  • 1. Photoinduced band gap shift and deep levels in luminescent carbon nanotubes.
    Finnie P; Lefebvre J
    ACS Nano; 2012 Feb; 6(2):1702-14. PubMed ID: 22308958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes.
    Lefebvre J; Homma Y; Finnie P
    Phys Rev Lett; 2003 May; 90(21):217401. PubMed ID: 12786586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes.
    Harrah DM; Swan AK
    ACS Nano; 2011 Jan; 5(1):647-55. PubMed ID: 21166468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes.
    Okazaki T; Okubo S; Nakanishi T; Joung SK; Saito T; Otani M; Okada S; Bandow S; Iijima S
    J Am Chem Soc; 2008 Mar; 130(12):4122-8. PubMed ID: 18311979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes.
    Zhang Y; Valley N; Brozena AH; Piao Y; Song X; Schatz GC; Wang Y
    J Phys Chem Lett; 2013 Mar; 4(5):826-30. PubMed ID: 26281939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the electronic structures of graphene quantum dot physisorption and chemisorption onto the TiO2 (110) surface: a first-principles calculation.
    Long R
    Chemphyschem; 2013 Feb; 14(3):579-82. PubMed ID: 23364942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.
    Zaric S; Ostojic GN; Kono J; Shaver J; Moore VC; Strano MS; Hauge RH; Smalley RE; Wei X
    Science; 2004 May; 304(5674):1129-31. PubMed ID: 15155942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes.
    Chernov AI; Fedotov PV; Lim HE; Miyata Y; Liu Z; Sato K; Suenaga K; Shinohara H; Obraztsova ED
    Nanoscale; 2018 Feb; 10(6):2936-2943. PubMed ID: 29369315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of KI encapsulation in single-walled carbon nanotubes by Raman and optical absorption spectroscopy.
    Ilie A; Bendall JS; Roy D; Philp E; Green ML
    J Phys Chem B; 2006 Jul; 110(28):13848-57. PubMed ID: 16836333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation.
    Xiao YF; Nhan TQ; Wilson MW; Fraser JM
    Phys Rev Lett; 2010 Jan; 104(1):017401. PubMed ID: 20366391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxides for homogeneous dispersion of carbon nanotubes.
    Tian L; Meziani MJ; Lu F; Kong CY; Cao L; Thorne TJ; Sun YP
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3217-22. PubMed ID: 20942436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. van der Waals layer-by-layer construction of a carbon nanotube 2D network.
    Sato M; Sano M
    Langmuir; 2005 Nov; 21(24):11490-4. PubMed ID: 16285831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.
    Goel M; Jayakannan M
    J Phys Chem B; 2010 Oct; 114(39):12508-19. PubMed ID: 20726547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes.
    Hwang JY; Nish A; Doig J; Douven S; Chen CW; Chen LC; Nicholas RJ
    J Am Chem Soc; 2008 Mar; 130(11):3543-53. PubMed ID: 18293976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the laser dye Styryl-13 as a reference near-infrared fluorophore: implications for the photoluminescence quantum yields of semiconducting single-walled carbon nanotubes.
    Stürzl N; Lebedkin S; Kappes MM
    J Phys Chem A; 2009 Sep; 113(38):10238-40. PubMed ID: 19757846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.