These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22309058)

  • 1. Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance.
    Valluru R; Link J; Claupein W
    Plant Biol (Stuttg); 2012 Jul; 14(4):641-51. PubMed ID: 22309058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chilling stress response of postemergent cotton seedlings.
    DeRidder BP; Crafts-Brandner SJ
    Physiol Plant; 2008 Nov; 134(3):430-9. PubMed ID: 18573190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress.
    Chen YP; Jia JF; Yue M
    Photochem Photobiol; 2010; 86(3):600-5. PubMed ID: 20408975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.
    Ramírez-Valiente JA; Sánchez-Gómez D; Aranda I; Valladares F
    Tree Physiol; 2010 May; 30(5):618-27. PubMed ID: 20357344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance.
    Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X
    Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and physiological responses of different wheat genotypes to chilling stress: a cue to explain yield loss.
    Li PF; Ma BL; Xiong YC; Zhang WY
    J Sci Food Agric; 2017 Sep; 97(12):4036-4045. PubMed ID: 28194804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes.
    Xiong FS; Mueller EC; Day TA
    Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductance.
    Melkonian J; Yu LX; Setter TL
    J Exp Bot; 2004 Aug; 55(403):1751-60. PubMed ID: 15235000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress.
    Nieves M; Nieves-Cordones M; Poorter H; Simón MD
    Tree Physiol; 2011 Jan; 31(1):92-101. PubMed ID: 21389005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf.
    Hogewoning SW; Harbinson J
    J Exp Bot; 2007; 58(3):453-63. PubMed ID: 17132711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.
    Dahal K; Kane K; Gadapati W; Webb E; Savitch LV; Singh J; Sharma P; Sarhan F; Longstaffe FJ; Grodzinski B; Hüner NP
    Physiol Plant; 2012 Feb; 144(2):169-88. PubMed ID: 21883254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phylogenetic independent contrasts (PICs).
    Ruiz-Robleto J; Villar R
    Plant Biol (Stuttg); 2005 Sep; 7(5):484-94. PubMed ID: 16163613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity.
    Hewezi T; Léger M; El Kayal W; Gentzbittel L
    J Exp Bot; 2006; 57(12):3109-22. PubMed ID: 16899522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves.
    De Schepper V; Vanhaecke L; Steppe K
    Tree Physiol; 2011 Nov; 31(11):1194-203. PubMed ID: 22001166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic, physiological, and molecular evaluation of rice chilling stress response at the vegetative stage.
    de Los Reyes BG; Yun SJ; Herath V; Xu F; Park MR; Lee JI; Kim KY
    Methods Mol Biol; 2013; 956():227-41. PubMed ID: 23135855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varying patterns of protein synthesis in bread wheat during heat shock.
    Efeoglu B; Terzioglu S
    Acta Biol Hung; 2007 Mar; 58(1):93-104. PubMed ID: 17385547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structural and functional reorganization of photosynthetic apparatus in cold adaptation of wheat plants].
    Venzhik JV; Titov DF; Talanova VV; Miroslavov ED; Koteeva NK
    Tsitologiia; 2012; 54(12):916-24. PubMed ID: 23461037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic plasticity and growth temperature: understanding interspecific variability.
    Atkin OK; Loveys BR; Atkinson LJ; Pons TL
    J Exp Bot; 2006; 57(2):267-81. PubMed ID: 16371402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of selenium on wheat seedlings under drought stress.
    Yao X; Chu J; Wang G
    Biol Trace Elem Res; 2009 Sep; 130(3):283-90. PubMed ID: 19214397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.