These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22309113)

  • 41. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure.
    Fernández ML; Granados-Chinchilla F; Rodríguez C
    J Appl Microbiol; 2015 Aug; 119(2):354-64. PubMed ID: 25973855
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overestimation of the abundance of sulfate-reducing bacteria in human feces by quantitative PCR targeting the Desulfovibrio 16S rRNA gene.
    Christophersen CT; Morrison M; Conlon MA
    Appl Environ Microbiol; 2011 May; 77(10):3544-6. PubMed ID: 21460115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The role of sulphate reducing bacteria in inflammatory bowel disease. A review].
    Rutkiewicz M; Landowski P; Kamińska B
    Med Wieku Rozwoj; 2007; 11(4):409-12. PubMed ID: 18605193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India.
    Verma R; Verma AK; Ahuja V; Paul J
    J Clin Microbiol; 2010 Nov; 48(11):4279-82. PubMed ID: 20861337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria.
    Dostal Webster A; Staley C; Hamilton MJ; Huang M; Fryxell K; Erickson R; Kabage AJ; Sadowsky MJ; Khoruts A
    Gut Microbes; 2019; 10(4):447-457. PubMed ID: 30810441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease.
    Sepehri S; Kotlowski R; Bernstein CN; Krause DO
    Inflamm Bowel Dis; 2007 Jun; 13(6):675-83. PubMed ID: 17262808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon.
    Nava GM; Carbonero F; Croix JA; Greenberg E; Gaskins HR
    ISME J; 2012 Jan; 6(1):57-70. PubMed ID: 21753800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters.
    Moestedt J; Nilsson Påledal S; Schnürer A
    Bioresour Technol; 2013 Mar; 132():327-32. PubMed ID: 23416620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methanogens outcompete sulphate reducing bacteria for H2 in the human colon.
    Strocchi A; Furne J; Ellis C; Levitt MD
    Gut; 1994 Aug; 35(8):1098-101. PubMed ID: 7926913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers.
    Lewis S; Brazier J; Beard D; Nazem N; Proctor D
    Scand J Gastroenterol; 2005 Nov; 40(11):1296-303. PubMed ID: 16334439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implications of the human microbiome in inflammatory bowel diseases.
    Bakhtiar SM; LeBlanc JG; Salvucci E; Ali A; Martin R; Langella P; Chatel JM; Miyoshi A; Bermúdez-Humarán LG; Azevedo V
    FEMS Microbiol Lett; 2013 May; 342(1):10-7. PubMed ID: 23431991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues.
    Heggendorn FL; Gonçalves Lde S; Dias EP; Heggendorn C; Lutterbach MT
    Acta Stomatol Croat; 2014 Jun; 48(2):116-22. PubMed ID: 27688355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sulfate-reducing anaerobic bacteria in human feces.
    Beerens H; Romond C
    Am J Clin Nutr; 1977 Nov; 30(11):1770-6. PubMed ID: 920636
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of dietary sulphate: absorption and excretion in humans.
    Florin T; Neale G; Gibson GR; Christl SU; Cummings JH
    Gut; 1991 Jul; 32(7):766-73. PubMed ID: 1855683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulphate-reducing bacteria in bovine faeces.
    Carli T; Diker KS; Eyigor A
    Lett Appl Microbiol; 1995 Oct; 21(4):228-9. PubMed ID: 7576512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding pathogens in the era of next generation sequencing.
    Méthot PO
    J Infect Dev Ctries; 2012 Sep; 6(9):689-91. PubMed ID: 23000871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of colonic sulphate-reducing bacteria in the pharmacology of heavy metals.
    Bolt L; Ellwood DC; Hill MJ; Wootton S; Watson JH
    Eur J Cancer Prev; 1994 Jul; 3(4):357-9. PubMed ID: 7950890
    [No Abstract]   [Full Text] [Related]  

  • 58. A Mathematical Model for the Hydrogenotrophic Metabolism of Sulphate-Reducing Bacteria.
    Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC
    Front Microbiol; 2019; 10():1652. PubMed ID: 31379794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa.
    Zinkevich V; Beech IB
    FEMS Microbiol Ecol; 2000 Dec; 34(2):147-155. PubMed ID: 11102692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Counting of sulphate-reducing bacteria in mixed bacterial populations.
    ABD-EL-MALEK Y; RIZK SG
    Nature; 1958 Aug; 182(4634):538. PubMed ID: 13577911
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.