These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 2230921)

  • 21. On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences.
    Schneider C; Lavoie BA; Capaday C
    J Neurophysiol; 2000 May; 83(5):2881-90. PubMed ID: 10805685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response.
    Hoy MG; Zernicke RF; Smith JL
    J Neurophysiol; 1985 Nov; 54(5):1282-94. PubMed ID: 4078617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for hip position in initiating the swing-to-stance transition in walking cats.
    McVea DA; Donelan JM; Tachibana A; Pearson KG
    J Neurophysiol; 2005 Nov; 94(5):3497-508. PubMed ID: 16093331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unexpected motor patterns for hindlimb muscles during slope walking in the cat.
    Smith JL; Carlson-Kuhta P
    J Neurophysiol; 1995 Nov; 74(5):2211-5. PubMed ID: 8592212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of treadmill locomotion in adult cats before and after spinal transection.
    Bélanger M; Drew T; Provencher J; Rossignol S
    J Neurophysiol; 1996 Jul; 76(1):471-91. PubMed ID: 8836238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion.
    McFadyen BJ; Lavoie S; Drew T
    Exp Brain Res; 1999 Apr; 125(4):502-10. PubMed ID: 10323297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics.
    Peters SE; Kamel LT; Bashor DP
    J Morphol; 1996 Oct; 230(1):1-16. PubMed ID: 8843687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings.
    Halbertsma JM
    Acta Physiol Scand Suppl; 1983; 521():1-75. PubMed ID: 6582764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulated Changes in Limb Mass and Rotational Inertia in Trotting Dogs (Canis lupus familiaris) and Their Effect on Limb Kinematics.
    Kilbourne BM; Carrier DR
    J Exp Zool A Ecol Genet Physiol; 2016 Dec; 325(10):665-674. PubMed ID: 28145055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats.
    Frigon A; Hurteau MF; Thibaudier Y; Leblond H; Telonio A; D'Angelo G
    J Neurosci; 2013 May; 33(19):8559-66. PubMed ID: 23658193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of work and power by the human lower-limb joints with increasing steady-state locomotion speed.
    Schache AG; Brown NA; Pandy MG
    J Exp Biol; 2015 Aug; 218(Pt 15):2472-81. PubMed ID: 26056240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.
    Rubenson J; Lloyd DG; Besier TF; Heliams DB; Fournier PA
    J Exp Biol; 2007 Jul; 210(Pt 14):2548-62. PubMed ID: 17601959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinematic analysis of cat hindlimb stepping.
    Shen L; Poppele RE
    J Neurophysiol; 1995 Dec; 74(6):2266-80. PubMed ID: 8747190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-effect of forward and backward locomotion on body orientation in space during quiet stance.
    De Nunzio AM; Zanetti C; Schieppati M
    Eur J Appl Physiol; 2009 Jan; 105(2):297-307. PubMed ID: 18982347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of muscle damage on walking biomechanics are speed-dependent.
    Tsatalas T; Giakas G; Spyropoulos G; Paschalis V; Nikolaidis MG; Tsaopoulos DE; Theodorou AA; Jamurtas AZ; Koutedakis Y
    Eur J Appl Physiol; 2010 Nov; 110(5):977-88. PubMed ID: 20668871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical characteristics of adults walking forward and backward in water at different stride frequencies.
    Cadenas-Sánchez C; Arellano R; Taladriz S; López-Contreras G
    J Sports Sci; 2016; 34(3):224-31. PubMed ID: 26047156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic motion analysis of the joints of the forelimbs and hind limbs of dogs during walking exercise regimens.
    Holler PJ; Brazda V; Dal-Bianco B; Lewy E; Mueller MC; Peham C; Bockstahler BA
    Am J Vet Res; 2010 Jul; 71(7):734-40. PubMed ID: 20594074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.