BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22309213)

  • 1. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1.
    Scott I; Webster BR; Li JH; Sack MN
    Biochem J; 2012 May; 443(3):655-61. PubMed ID: 22309213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA.
    Thapa D; Wu K; Stoner MW; Xie B; Zhang M; Manning JR; Lu Z; Li JH; Chen Y; Gucek M; Playford MP; Mehta NN; Harmon D; O'Doherty RM; Jurczak MJ; Sack MN; Scott I
    J Biol Chem; 2018 Nov; 293(46):17676-17684. PubMed ID: 30323061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension.
    Dikalova A; Fehrenbach D; Mayorov V; Panov A; Ao M; Lantier L; Amarnath V; Lopez MG; Billings FT; Sack MN; Dikalov S
    Circ Res; 2024 May; 134(11):1451-1464. PubMed ID: 38639088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy.
    Webster BR; Scott I; Han K; Li JH; Lu Z; Stevens MV; Malide D; Chen Y; Samsel L; Connelly PS; Daniels MP; McCoy JP; Combs CA; Gucek M; Sack MN
    J Cell Sci; 2013 Nov; 126(Pt 21):4843-9. PubMed ID: 24006259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking.
    Wu K; Wang L; Chen Y; Pirooznia M; Singh K; Wälde S; Kehlenbach RH; Scott I; Gucek M; Sack MN
    J Cell Sci; 2018 Nov; 131(22):. PubMed ID: 30333138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCN5L1/BLOS1 Links Acetylation, Organelle Remodeling, and Metabolism.
    Scott I; Wang L; Wu K; Thapa D; Sack MN
    Trends Cell Biol; 2018 May; 28(5):346-355. PubMed ID: 29477615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.
    Di Domenico A; Hofer A; Tundo F; Wenz T
    IUBMB Life; 2014 Nov; 66(11):793-802. PubMed ID: 25400169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis.
    Wang L; Scott I; Zhu L; Wu K; Han K; Chen Y; Gucek M; Sack MN
    Nat Commun; 2017 Sep; 8(1):523. PubMed ID: 28900165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; Lai YC; Shiva S; Scott I
    Physiol Rep; 2019 Apr; 7(8):e14054. PubMed ID: 31033247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging roles of GCN5L1 in mitochondrial and vacuolar organelle biology.
    Wu K; Scott I; Wang L; Thapa D; Sack MN
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194598. PubMed ID: 32599084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPER-dependent estrogen signaling increases cardiac GCN5L1 expression.
    Manning JR; Thapa D; Zhang M; Stoner MW; Sembrat JC; Rojas M; Scott I
    Am J Physiol Heart Circ Physiol; 2022 May; 322(5):H762-H768. PubMed ID: 35245133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet.
    Thapa D; Manning JR; Stoner MW; Zhang M; Xie B; Scott I
    Sci Rep; 2020 Jun; 10(1):10665. PubMed ID: 32606301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma.
    Zhang T; Cui Y; Wu Y; Meng J; Han L; Zhang J; Zhang C; Yang C; Chen L; Bai X; Zhang K; Wu K; Sack MN; Wang L; Zhu L
    Clin Transl Med; 2022 May; 12(5):e852. PubMed ID: 35538890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress.
    Bugga P; Manning JR; Mushala BAS; Stoner MW; Sembrat J; Scott I
    Cell Signal; 2024 Apr; 116():111065. PubMed ID: 38281616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension.
    Dikalov SI; Dikalova AE
    Antioxid Redox Signal; 2019 Oct; 31(10):710-721. PubMed ID: 30618267
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.
    Fritz KS; Galligan JJ; Hirschey MD; Verdin E; Petersen DR
    J Proteome Res; 2012 Mar; 11(3):1633-43. PubMed ID: 22309199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes.
    Lv T; Hu Y; Ma Y; Zhen J; Xin W; Wan Q
    J Physiol Biochem; 2019 Nov; 75(4):597-606. PubMed ID: 31760589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3.
    Kwon S; Seok S; Yau P; Li X; Kemper B; Kemper JK
    J Biol Chem; 2017 Oct; 292(42):17312-17323. PubMed ID: 28808064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide Dismutase 2) Deacetylation in Hypertension.
    He J; Liu X; Su C; Wu F; Sun J; Zhang J; Yang X; Zhang C; Zhou Z; Zhang X; Lin X; Tao J
    Arterioscler Thromb Vasc Biol; 2019 Aug; 39(8):1682-1698. PubMed ID: 31189433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.