These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22309656)

  • 1. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method.
    Yu S; Du J; Luo T; Huang Y; Jing C
    J Hazard Mater; 2012 Mar; 209-210():250-5. PubMed ID: 22309656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB; Finley BL
    J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J; Lu J; Wu Q; Jing C
    J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.
    Tinjum JM; Benson CH; Edil TB
    Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J; Zhang WX
    J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the treatment of chromite ore processing residues.
    Wang T; He M; Pan Q
    J Hazard Mater; 2007 Oct; 149(2):440-4. PubMed ID: 17482759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.
    Velasco A; Ramírez M; Hernández S; Schmidt W; Revah S
    J Hazard Mater; 2012 Mar; 207-208():97-102. PubMed ID: 21543156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue.
    Hillier S; Roe MJ; Geelhoed JS; Fraser AR; Farmer JG; Paterson E
    Sci Total Environ; 2003 Jun; 308(1-3):195-210. PubMed ID: 12738213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC; Wazne M; Moon DH
    Chemosphere; 2015 Oct; 136():95-101. PubMed ID: 25966327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the human health risks posed by exposure to chromium-contaminated soils.
    Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ
    J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG
    J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.
    Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF
    Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching mechanisms of Cr(VI) from chromite ore processing residue.
    Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A
    J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).
    Elzinga EJ; Cirmo A
    J Hazard Mater; 2010 Nov; 183(1-3):145-54. PubMed ID: 20674158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):370-7. PubMed ID: 16842911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.
    Zhang DL; Zhang MY; Zhang CH; Sun YJ; Sun X; Yuan XZ
    Environ Sci Technol; 2016 Mar; 50(6):3111-8. PubMed ID: 26862886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility.
    Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL
    Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS
    Li Y; Liang J; Yang Z; Wang H; Liu Y
    Sci Total Environ; 2019 Mar; 658():315-323. PubMed ID: 30577025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.
    Matern K; Weigand H; Singh A; Mansfeldt T
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3582-3592. PubMed ID: 27882493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.