These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 22309808)

  • 1. The influence of the dynamic transformation of a sliding lever on aiming errors.
    Heuer H; Sülzenbrück S
    Neuroscience; 2012 Apr; 207():137-47. PubMed ID: 22309808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trajectories in operating a handheld tool.
    Heuer H; Sülzenbrück S
    J Exp Psychol Hum Percept Perform; 2009 Apr; 35(2):375-89. PubMed ID: 19331495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy.
    Lee MH; Ranganathan R; Newell KM
    Dev Psychobiol; 2011 Nov; 53(7):685-93. PubMed ID: 21432846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid online correction is selectively suppressed during movement with a visuomotor transformation.
    Gritsenko V; Kalaska JF
    J Neurophysiol; 2010 Dec; 104(6):3084-104. PubMed ID: 20844106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction time and movement duration influence on end point accuracy in a fast reaching task.
    Skurvidas A; Mickevichiene D; Cesnavichiene V; Gutnik B; Nash D
    Fiziol Cheloveka; 2012; 38(3):73-80. PubMed ID: 22830246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustment of the human arm viscoelastic properties to the direction of reaching.
    Frolov AA; Prokopenko RA; Dufossè M; Ouezdou FB
    Biol Cybern; 2006 Feb; 94(2):97-109. PubMed ID: 16344944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of altering initial position on movement direction and extent.
    Sainburg RL; Lateiner JE; Latash ML; Bagesteiro LB
    J Neurophysiol; 2003 Jan; 89(1):401-15. PubMed ID: 12522189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic invariants during cyclical arm movements.
    Dounskaia N
    Biol Cybern; 2007 Feb; 96(2):147-63. PubMed ID: 17031664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended practice of reciprocal wrist and arm movements of varying difficulties.
    Boyle J; Panzer S; Wright D; Shea CH
    Acta Psychol (Amst); 2012 Jun; 140(2):142-53. PubMed ID: 22627158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference frame conversions for repeated arm movements.
    Sorrento GU; Henriques DY
    J Neurophysiol; 2008 Jun; 99(6):2968-84. PubMed ID: 18400956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additional load decreases movement time in the wrist but not in arm movements at ID 6.
    Panzer S; Boyle JB; Shea CH
    Exp Brain Res; 2013 Jan; 224(2):243-53. PubMed ID: 23099550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlimb transfer of novel inertial dynamics is asymmetrical.
    Wang J; Sainburg RL
    J Neurophysiol; 2004 Jul; 92(1):349-60. PubMed ID: 15028745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint angle variability in the time course of reaching movements.
    Krüger M; Eggert T; Straube A
    Clin Neurophysiol; 2011 Apr; 122(4):759-66. PubMed ID: 21030301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inertial anisotropy of the arm is accurately predicted during movement planning.
    Flanagan JR; Lolley S
    J Neurosci; 2001 Feb; 21(4):1361-9. PubMed ID: 11160407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.