BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22310157)

  • 21. Design of a Portable Orthogonal Surface Acoustic Wave Sensor System for Simultaneous Sensing and Removal of Nonspecifically Bound Proteins.
    Li S; Bhethanabotla VR
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor.
    Dickherber A; Corso CD; Hunt W
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4590-3. PubMed ID: 17946254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface acoustic wave microfluidics.
    Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ
    Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Shear Horizontal Surface Acoustic Wave Biosensors Using "Layer Parameter" Obtained from Sensor Responses during Immunoreaction.
    Kano K; Yatsuda H; Kondoh J
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators.
    Ozgur E; Toren P; Aktas O; Huseyinoglu E; Bayindir M
    Sci Rep; 2015 Aug; 5():13173. PubMed ID: 26271605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalent bound sensing layers on surface acoustic wave (SAW) biosensors.
    BariƩ N; Rapp M
    Biosens Bioelectron; 2001 Dec; 16(9-12):979-87. PubMed ID: 11679278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Acoustic Waves (SAW) Sensors: Tone-Burst Sensing for Lab-on-a-Chip Devices.
    Mandal D; Bovender T; Geil RD; Banerjee S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerosol jet printing of surface acoustic wave microfluidic devices.
    Rich J; Cole B; Li T; Lu B; Fu H; Smith BN; Xia J; Yang S; Zhong R; Doherty JL; Kaneko K; Suzuki H; Tian Z; Franklin AD; Huang TJ
    Microsyst Nanoeng; 2024; 10():2. PubMed ID: 38169478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications.
    Martin F; Newton MI; McHale G; Melzak KA; Gizeli E
    Biosens Bioelectron; 2004 Jan; 19(6):627-32. PubMed ID: 14683647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface generated acoustic wave biosensors for the detection of pathogens: a review.
    Rocha-Gaso MI; March-Iborra C; Montoya-Baides A; Arnau-Vives A
    Sensors (Basel); 2009; 9(7):5740-69. PubMed ID: 22346725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective.
    Go DB; Atashbar MZ; Ramshani Z; Chang HC
    Anal Methods; 2017; 9(28):4112-4134. PubMed ID: 29151901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology.
    Kim S; Roy S
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):516-35. PubMed ID: 24206604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physics and applications of microfluidics in biology.
    Beebe DJ; Mensing GA; Walker GM
    Annu Rev Biomed Eng; 2002; 4():261-86. PubMed ID: 12117759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation on recent quartz-like materials for SAW applications.
    Da Cunha MP; De Azevedo Fagundes S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1583-90. PubMed ID: 18244357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dry membrane protection technique to allow surface acoustic wave biosensor measurements of biological model membrane approaches.
    Reder-Christ K; Schmitz P; Bota M; Gerber U; Falkenstein-Paul H; Fuss C; Enachescu M; Bendas G
    Sensors (Basel); 2013 Sep; 13(9):12392-405. PubMed ID: 24064603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies.
    Wu LQ; Payne GF
    Trends Biotechnol; 2004 Nov; 22(11):593-9. PubMed ID: 15491804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology.
    Li Y; Fu YQ; Brodie SD; Alghane M; Walton AJ
    Biomicrofluidics; 2012 Mar; 6(1):12812-128129. PubMed ID: 22662079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices.
    Fu YQ; Garcia-Gancedo L; Pang HF; Porro S; Gu YW; Luo JK; Zu XT; Placido F; Wilson JI; Flewitt AJ; Milne WI
    Biomicrofluidics; 2012 Jun; 6(2):24105-2410511. PubMed ID: 22655016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
    Gao F; Bermak A; Benchabane S; Robert L; Khelif A
    Microsyst Nanoeng; 2021; 7():8. PubMed ID: 33489307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.
    Josse F; Bender F; Cernose RW
    Anal Chem; 2001 Dec; 73(24):5937-44. PubMed ID: 11791563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.