These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22310311)

  • 1. Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation.
    Kim KJ; Filosa JA
    J Physiol; 2012 Apr; 590(7):1757-70. PubMed ID: 22310311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction.
    Kim KJ; Iddings JA; Stern JE; Blanco VM; Croom D; Kirov SA; Filosa JA
    J Neurosci; 2015 May; 35(21):8245-57. PubMed ID: 26019339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.
    Kim KJ; Ramiro Diaz J; Iddings JA; Filosa JA
    J Neurosci; 2016 Dec; 36(50):12624-12639. PubMed ID: 27821575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and Cannulation of Cerebral Parenchymal Arterioles.
    Pires PW; Dabertrand F; Earley S
    J Vis Exp; 2016 May; (111):. PubMed ID: 27286481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tone-dependent vascular responses to astrocyte-derived signals.
    Blanco VM; Stern JE; Filosa JA
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2855-63. PubMed ID: 18456724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal activity-related coupling in cortical arterioles: involvement of astrocyte-derived factors.
    Lovick TA; Brown LA; Key BJ
    Exp Physiol; 2005 Jan; 90(1):131-40. PubMed ID: 15466455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat.
    Iddings JA; Kim KJ; Zhou Y; Higashimori H; Filosa JA
    J Cereb Blood Flow Metab; 2015 Jul; 35(7):1127-36. PubMed ID: 25757753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels.
    Lovick TA; Brown LA; Key BJ
    Neuroscience; 1999; 92(1):47-60. PubMed ID: 10392829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
    Filosa JA; Bonev AD; Nelson MT
    Circ Res; 2004 Nov; 95(10):e73-81. PubMed ID: 15499024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles.
    Jackson WF; Boerman EM
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H667-H675. PubMed ID: 28667050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal cortical and medullary microvascular blood flow autoregulation in rat.
    Harrison-Bernard LM; Navar LG
    Kidney Int Suppl; 1996 Dec; 57():S23-9. PubMed ID: 8941918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-dependent dilation and myogenic constriction interact to establish the resistance of skeletal muscle arterioles.
    Sun D; Huang A; Koller A; Kaley G
    Microcirculation; 1995 Sep; 2(3):289-95. PubMed ID: 8748953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus.
    Du W; Stern JE; Filosa JA
    J Neurosci; 2015 Apr; 35(13):5330-41. PubMed ID: 25834057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of carpronium chloride on the microvascular blood flow in rat mesentery using intravital videomicroscopy.
    Minamiyama M; Minato T; Yamamoto A; Kaihatsu T; Tsunoda K
    Clin Hemorheol Microcirc; 2006; 34(1-2):125-9. PubMed ID: 16543627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats.
    Kroppenstedt SN; Thomale UW; Griebenow M; Sakowitz OW; Schaser KD; Mayr PS; Unterberg AW; Stover JF
    Crit Care Med; 2003 Aug; 31(8):2211-21. PubMed ID: 12973182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress.
    Nakahata K; Kinoshita H; Azma T; Matsuda N; Hama-Tomioka K; Haba M; Hatano Y
    Anesthesiology; 2008 Feb; 108(2):269-75. PubMed ID: 18212572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possibility of linear dependence between vascular wall tension and blood flow in precortical arterioles.
    Aleksandrin VV; Aleksandrov PN
    Bull Exp Biol Med; 2002 Apr; 133(4):344-6. PubMed ID: 12124641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral microcirculatory changes in rat with a cardiopulmonary bypass using fluorescence videomicroscopy.
    Ohnishi Y; Hu QH; Yamaguchi S; Kuro M; Niimi H
    Clin Hemorheol Microcirc; 2002; 26(1):15-26. PubMed ID: 11904467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purinergic receptors regulate myogenic tone in cerebral parenchymal arterioles.
    Brayden JE; Li Y; Tavares MJ
    J Cereb Blood Flow Metab; 2013 Feb; 33(2):293-9. PubMed ID: 23168530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.