These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22310368)

  • 21. Electrophoresis techniques to investigate defects in oxidative phosphorylation.
    Calvaruso MA; Smeitink J; Nijtmans L
    Methods; 2008 Dec; 46(4):281-7. PubMed ID: 18948205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ginkgo biloba extract ameliorates oxidative phosphorylation performance and rescues abeta-induced failure.
    Rhein V; Giese M; Baysang G; Meier F; Rao S; Schulz KL; Hamburger M; Eckert A
    PLoS One; 2010 Aug; 5(8):e12359. PubMed ID: 20808761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic bioenergetic alterations in colorectal adenomatous polyps and adenocarcinomas.
    Lin WR; Chiang JM; Lim SN; Su MY; Chen TH; Huang SW; Chen CW; Wu RC; Tsai CL; Lin YH; Alison MR; Hsieh SY; Yu JS; Chiu CT; Yeh CT
    EBioMedicine; 2019 Jun; 44():334-345. PubMed ID: 31122841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence imaging of mitochondria in cultured skin fibroblasts: a useful method for the detection of oxidative phosphorylation defects.
    De Paepe B; Smet J; Vanlander A; Seneca S; Lissens W; De Meirleir L; Vandewoestyne M; Deforce D; Rodenburg RJ; Van Coster R
    Pediatr Res; 2012 Sep; 72(3):232-40. PubMed ID: 22728747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnostic value of immunostaining in cultured skin fibroblasts from patients with oxidative phosphorylation defects.
    de Paepe B; Smet J; Leroy JG; Seneca S; George E; Matthys D; van Maldergem L; Scalais E; Lissens W; de Meirleir L; Meulemans A; van Coster R
    Pediatr Res; 2006 Jan; 59(1):2-6. PubMed ID: 16327006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects.
    Smits P; Mattijssen S; Morava E; van den Brand M; van den Brandt F; Wijburg F; Pruijn G; Smeitink J; Nijtmans L; Rodenburg R; van den Heuvel L
    Eur J Hum Genet; 2010 Mar; 18(3):324-9. PubMed ID: 19809478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of the Mitochondrial Fatty Acid β-Oxidation Protein Medium-Chain Acyl-Coenzyme A Dehydrogenase Disrupts Oxidative Phosphorylation Protein Complex Stability and Function.
    Lim SC; Tajika M; Shimura M; Carey KT; Stroud DA; Murayama K; Ohtake A; McKenzie M
    Sci Rep; 2018 Jan; 8(1):153. PubMed ID: 29317722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defects in oxidative phosphorylation. Biochemical investigations in skeletal muscle and expression of the lesion in other cells.
    Scholte HR; Busch HF; Luyt-Houwen IE; Vaandrager-Verduin MH; Przyrembel H; Arts WF
    J Inherit Metab Dis; 1987; 10 Suppl 1():81-97. PubMed ID: 2824921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of OXPHOS Machinery Subunits: Functional Implications in Cell Biology and Disease.
    Castellanos E; Lanning NJ
    Yale J Biol Med; 2019 Sep; 92(3):523-531. PubMed ID: 31543713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional co-expression and co-regulation of genes coding for components of the oxidative phosphorylation system.
    van Waveren C; Moraes CT
    BMC Genomics; 2008 Jan; 9():18. PubMed ID: 18194548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial disorders due to nuclear OXPHOS gene defects.
    Ugalde C; Morán M; Blázquez A; Arenas J; Martín MA
    Adv Exp Med Biol; 2009; 652():85-116. PubMed ID: 20225021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease.
    Thompson K; Stroud DA; Thorburn DR; Taylor RW
    Handb Clin Neurol; 2023; 194():127-139. PubMed ID: 36813309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease.
    Nsiah-Sefaa A; McKenzie M
    Biosci Rep; 2016 Feb; 36(2):. PubMed ID: 26839416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bi-allelic Mutations in the Mitochondrial Ribosomal Protein MRPS2 Cause Sensorineural Hearing Loss, Hypoglycemia, and Multiple OXPHOS Complex Deficiencies.
    Gardeitchik T; Mohamed M; Ruzzenente B; Karall D; Guerrero-Castillo S; Dalloyaux D; van den Brand M; van Kraaij S; van Asbeck E; Assouline Z; Rio M; de Lonlay P; Scholl-Buergi S; Wolthuis DFGJ; Hoischen A; Rodenburg RJ; Sperl W; Urban Z; Brandt U; Mayr JA; Wong S; de Brouwer APM; Nijtmans L; Munnich A; Rötig A; Wevers RA; Metodiev MD; Morava E
    Am J Hum Genet; 2018 Apr; 102(4):685-695. PubMed ID: 29576219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolated deficiencies of OXPHOS complexes I and IV are identified accurately and quickly by simple enzyme activity immunocapture assays.
    Willis JH; Capaldi RA; Huigsloot M; Rodenburg RJ; Smeitink J; Marusich MF
    Biochim Biophys Acta; 2009 May; 1787(5):533-8. PubMed ID: 19041632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions.
    Pickrell AM; Fukui H; Wang X; Pinto M; Moraes CT
    J Neurosci; 2011 Jul; 31(27):9895-904. PubMed ID: 21734281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway.
    Abe Y; Sakairi T; Beeson C; Kopp JB
    Am J Physiol Renal Physiol; 2013 Nov; 305(10):F1477-90. PubMed ID: 24049142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology.
    Janssen AJ; Trijbels FJ; Sengers RC; Wintjes LT; Ruitenbeek W; Smeitink JA; Morava E; van Engelen BG; van den Heuvel LP; Rodenburg RJ
    Clin Chem; 2006 May; 52(5):860-71. PubMed ID: 16543390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.