These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22310490)

  • 1. Manipulation of individual water molecules on CeO2(111).
    Torbrügge S; Custance O; Morita S; Reichling M
    J Phys Condens Matter; 2012 Feb; 24(8):084010. PubMed ID: 22310490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation of a monoclonal antibody adsorbed at the solid/solution interface: a combined study using atomic force microscopy and neutron reflectivity.
    Xu H; Zhao X; Grant C; Lu JR; Williams DE; Penfold J
    Langmuir; 2006 Jul; 22(14):6313-20. PubMed ID: 16800692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature.
    Yurtsever A; Sugimoto Y; Abe M; Morita S
    Nanotechnology; 2010 Apr; 21(16):165702. PubMed ID: 20348596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging and manipulation of adsorbed lipid vesicles by an AFM tip: experiment and Monte Carlo simulations.
    Dimitrievski K; Zäch M; Zhdanov VP; Kasemo B
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):115-25. PubMed ID: 16414252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy.
    Pawlak R; Kawai S; Fremy S; Glatzel T; Meyer E
    J Phys Condens Matter; 2012 Feb; 24(8):084005. PubMed ID: 22310075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of atoms across a surface at room temperature.
    Fishlock TW; Oral A; Egdell RG; Pethica JB
    Nature; 2000 Apr; 404(6779):743-5. PubMed ID: 10783883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging and manipulation of adatoms on an alumina surface by noncontact atomic force microscopy.
    Simon GH; Heyde M; Freund HJ
    J Phys Condens Matter; 2012 Feb; 24(8):084007. PubMed ID: 22310328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110).
    Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M
    J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The force needed to move an atom on a surface.
    Ternes M; Lutz CP; Hirjibehedin CF; Giessibl FJ; Heinrich AJ
    Science; 2008 Feb; 319(5866):1066-9. PubMed ID: 18292336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral manipulation of atomic size defects on the CaF(2)(111) surface.
    Hirth S; Ostendorf F; Reichling M
    Nanotechnology; 2006 Apr; 17(7):S148-54. PubMed ID: 21727406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly resolved non-contact atomic force microscopy images of the Sn/Si(111)-([Formula: see text]) surface.
    Sugimoto Y; Abe M; Hirayama S; Morita S
    Nanotechnology; 2006 Aug; 17(16):4235-9. PubMed ID: 21727565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A torsional resonance mode AFM for in-plane tip surface interactions.
    Huang L; Su C
    Ultramicroscopy; 2004 Aug; 100(3-4):277-85. PubMed ID: 15231320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy.
    Namai Y; Matsuoka O
    J Phys Chem B; 2005 Dec; 109(50):23948-54. PubMed ID: 16375383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal.
    Whitehead KA; Rogers D; Colligon J; Wright C; Verran J
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):44-53. PubMed ID: 16822658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy.
    Lauritsen JV; Foster AS; Olesen GH; Christensen MC; Kühnle A; Helveg S; Rostrup-Nielsen JR; Clausen BS; Reichling M; Besenbacher F
    Nanotechnology; 2006 Jul; 17(14):3436-41. PubMed ID: 19661587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water adsorption on a p(2x2)-Ni(111)-O surface studied by surface x-ray diffraction and infrared reflection absorption spectroscopy at 25 and 140 K.
    Nakamura M; Tanaka M; Ito M; Sakata O
    J Chem Phys; 2005 Jun; 122(22):224703. PubMed ID: 15974699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy.
    Trevethan T; Kantorovich L
    Nanotechnology; 2006 Apr; 17(7):S205-12. PubMed ID: 21727416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atom-selective imaging and mechanical atom manipulation using the non-contact atomic force microscope.
    Morita S; Sugimoto Y; Oyabu N; Nishi R; Custance O; Sugawara Y; Abe M
    J Electron Microsc (Tokyo); 2004; 53(2):163-8. PubMed ID: 15180212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.