BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22310641)

  • 1. Vitamin D 25-hydroxylase - Four decades of searching, are we there yet?
    Zhu J; DeLuca HF
    Arch Biochem Biophys; 2012 Jul; 523(1):30-6. PubMed ID: 22310641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-step hydroxylation of vitamin D3 by a genetically engineered CYP105A1: enzymes and catalysis.
    Hayashi K; Yasuda K; Sugimoto H; Ikushiro S; Kamakura M; Kittaka A; Horst RL; Chen TC; Ohta M; Shiro Y; Sakaki T
    FEBS J; 2010 Oct; 277(19):3999-4009. PubMed ID: 20731719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of cytochrome P450 enzymes in prostate cancer development and treatment.
    Chen TC; Sakaki T; Yamamoto K; Kittaka A
    Anticancer Res; 2012 Jan; 32(1):291-8. PubMed ID: 22213318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of vitamin D(3) by human CYP27A1.
    Sawada N; Sakaki T; Ohta M; Inouye K
    Biochem Biophys Res Commun; 2000 Jul; 273(3):977-84. PubMed ID: 10891358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 25-Hydroxylation of vitamin D3 in primary cultures of pig hepatocytes: evidence for a role of both CYP2D25 and CYP27A1.
    Hosseinpour F; Ibranovic I; Tang W; Wikvall K
    Biochem Biophys Res Commun; 2003 Apr; 303(3):877-83. PubMed ID: 12670492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes involved in the activation and inactivation of vitamin D.
    Prosser DE; Jones G
    Trends Biochem Sci; 2004 Dec; 29(12):664-73. PubMed ID: 15544953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1.
    Sawada N; Sakaki T; Yoneda S; Kusudo T; Shinkyo R; Ohta M; Inouye K
    Biochem Biophys Res Commun; 2004 Jul; 320(1):156-64. PubMed ID: 15207715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1.
    Hayashi K; Sugimoto H; Shinkyo R; Yamada M; Ikeda S; Ikushiro S; Kamakura M; Shiro Y; Sakaki T
    Biochemistry; 2008 Nov; 47(46):11964-72. PubMed ID: 18937506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell specificity and properties of the C-3 epimerization of Vitamin D3 metabolites.
    Kamao M; Tatematsu S; Sawada N; Sakaki T; Hatakeyama S; Kubodera N; Okano T
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):39-42. PubMed ID: 15225744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and properties of the CYP2D25 promoter: transcriptional regulation by vitamin D3 metabolites.
    Ellfolk M; Norlin M; Wikvall K
    Biochem Biophys Res Commun; 2006 Jun; 345(2):568-72. PubMed ID: 16690021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic activation in vitamin D signaling - Past, present and future.
    Norlin M; Wikvall K
    Arch Biochem Biophys; 2023 Jul; 742():109639. PubMed ID: 37196753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of rat and human CYP2J enzymes as Vitamin D 25-hydroxylases.
    Aiba I; Yamasaki T; Shinki T; Izumi S; Yamamoto K; Yamada S; Terato H; Ide H; Ohyama Y
    Steroids; 2006 Oct; 71(10):849-56. PubMed ID: 16842832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular biology of cytochrome P450 in kidney].
    Noshiro M; Ohyama Y
    Nihon Rinsho; 1992 Dec; 50(12):3079-85. PubMed ID: 1337122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of residues in substrate recognition site 3 for the catalytic function of CYP2D25 (vitamin D 25-hydroxylase).
    Hosseinpour F; Hidestrand M; Ingelman-Sundberg M; Wikvall K
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1059-63. PubMed ID: 11689019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of a mutated residue at the entrance of the substrate access channel in cytochrome p450 engineered for vitamin D(3) hydroxylation activity.
    Fukunishi H; Yagi H; Kamijo K; Shimada J
    Biochemistry; 2011 Oct; 50(39):8302-10. PubMed ID: 21877691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats.
    Tissandie E; Guéguen Y; Lobaccaro JM; Aigueperse J; Gourmelon P; Paquet F; Souidi M
    Toxicology; 2006 Aug; 225(1):75-80. PubMed ID: 16806633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate and enzyme trafficking as a means of regulating 1,25-dihydroxyvitamin D synthesis and action: the human innate immune response.
    Adams JS; Chen H; Chun R; Ren S; Wu S; Gacad M; Nguyen L; Ride J; Liu P; Modlin R; Hewison M
    J Bone Miner Res; 2007 Dec; 22 Suppl 2():V20-4. PubMed ID: 18290716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450.
    Sakaki T; Sugimoto H; Hayashi K; Yasuda K; Munetsuna E; Kamakura M; Ikushiro S; Shiro Y
    Biochim Biophys Acta; 2011 Jan; 1814(1):249-56. PubMed ID: 20654743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered expression of cytochrome P450 enzymes involved in metabolism of androgens and vitamin D in the prostate as a risk factor for prostate cancer.
    Maksymchuk OV; Kashuba VI
    Pharmacol Rep; 2020 Oct; 72(5):1161-1172. PubMed ID: 32681429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.