BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22311153)

  • 21. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material.
    Barceló I; Campiña JM; Lana-Villarreal T; Gómez R
    Phys Chem Chem Phys; 2012 Apr; 14(16):5801-7. PubMed ID: 22426179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double heterojunction nanowire photocatalysts for hydrogen generation.
    Tongying P; Vietmeyer F; Aleksiuk D; Ferraudi GJ; Krylova G; Kuno M
    Nanoscale; 2014 Apr; 6(8):4117-24. PubMed ID: 24604246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells.
    Guo W; Chen C; Ye M; Lv M; Lin C
    Nanoscale; 2014 Apr; 6(7):3656-63. PubMed ID: 24562374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires.
    Kung SC; van der Veer WE; Yang F; Donavan KC; Penner RM
    Nano Lett; 2010 Apr; 10(4):1481-5. PubMed ID: 20334354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.
    Zhu G; Pan L; Xu T; Sun Z
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3146-51. PubMed ID: 21744836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y; Gan L; Dai L; Dai Y; Guo X; Meng H; Yu B; Shi Z; Shang K; Qin G
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.
    Zhou N; Yang Y; Huang X; Wu H; Luo Y; Li D; Meng Q
    ChemSusChem; 2013 Apr; 6(4):687-92. PubMed ID: 23495072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.
    Liu D; Zhao M; Li Y; Bian Z; Zhang L; Shang Y; Xia X; Zhang S; Yun D; Liu Z; Cao A; Huang C
    ACS Nano; 2012 Dec; 6(12):11027-34. PubMed ID: 23128145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
    Yu H; Brock SL
    ACS Nano; 2008 Aug; 2(8):1563-70. PubMed ID: 19206358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells.
    Joshi P; Zhang L; Chen Q; Galipeau D; Fong H; Qiao Q
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3572-7. PubMed ID: 21073177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hollow TiO₂ porous nanosheets: transformation from ZnO porous nanosheets and application in photoelectrochemical cells.
    Chen H; Zhu L; Hou Q; Liu H; Li W
    ChemSusChem; 2013 Jun; 6(6):983-8. PubMed ID: 23589376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation.
    Chi CF; Liau SY; Lee YL
    Nanotechnology; 2010 Jan; 21(2):025202. PubMed ID: 19955606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient passivated phthalocyanine-quantum dot solar cells.
    Blas-Ferrando VM; Ortiz J; González-Pedro V; Sánchez RS; Mora-Seró I; Fernández-Lázaro F; Sastre-Santos Á
    Chem Commun (Camb); 2015 Jan; 51(9):1732-5. PubMed ID: 25519050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly catalytic carbon nanotube/Pt nanohybrid-based transparent counter electrode for efficient dye-sensitized solar cells.
    Chen HY; Liao JY; Lei BX; Kuang DB; Fang Y; Su CY
    Chem Asian J; 2012 Aug; 7(8):1795-802. PubMed ID: 22570255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.
    Zhang S; Ji C; Bian Z; Liu R; Xia X; Yun D; Zhang L; Huang C; Cao A
    Nano Lett; 2011 Aug; 11(8):3383-7. PubMed ID: 21766836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states.
    Amelia M; Impellizzeri S; Monaco S; Yildiz I; Silvi S; Raymo FM; Credi A
    Chemphyschem; 2011 Aug; 12(12):2280-8. PubMed ID: 21698742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser-induced charge separation in CdSe nanowires.
    Schäfer S; Wang Z; Zierold R; Kipp T; Mews A
    Nano Lett; 2011 Jul; 11(7):2672-7. PubMed ID: 21630664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.