These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22311153)

  • 41. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
    Santra PK; Kamat PV
    J Am Chem Soc; 2012 Feb; 134(5):2508-11. PubMed ID: 22280479
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visible Light-driven Photoelectrochemical Determination of p-Nitrophenol Based on CdSe Quantum Dots and DNA Composite Film Modified Electrode.
    Yan K; Zhu Y; Cheng L; Zhang J
    Anal Sci; 2015; 31(7):669-75. PubMed ID: 26165290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.
    Farrow B; Kamat PV
    J Am Chem Soc; 2009 Aug; 131(31):11124-31. PubMed ID: 19603793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alternate monolayers of CdSe nanocrystals and perylene tetracarboxylate: quantum dot hypersensitization for dye-sensitized solar cells.
    Vercelli B; Zotti G; Berlin A
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3233-8. PubMed ID: 22663252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate.
    Schierhorn M; Boettcher SW; Kraemer S; Stucky GD; Moskovits M
    Nano Lett; 2009 Sep; 9(9):3262-7. PubMed ID: 19705806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.
    Hu Z; Zhang X; Xie C; Wu C; Zhang X; Bian L; Wu Y; Wang L; Zhang Y; Jie J
    Nanoscale; 2011 Nov; 3(11):4798-803. PubMed ID: 21952747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells.
    Han J; Kim H; Kim DY; Jo SM; Jang SY
    ACS Nano; 2010 Jun; 4(6):3503-9. PubMed ID: 20509667
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water.
    Dong Y; Chen Y; Jiang P; Wang G; Wu X; Wu R; Zhang C
    Chem Asian J; 2015 Aug; 10(8):1660-7. PubMed ID: 26011705
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells.
    Peng T; Sun W; Sun X; Huang N; Liu Y; Bu C; Guo S; Zhao XZ
    Nanoscale; 2013 Jan; 5(1):337-41. PubMed ID: 23165970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoelectrochemical CdSe/TiO
    Qin C; Bai X; Zhang Y; Gao K
    Mikrochim Acta; 2018 May; 185(5):278. PubMed ID: 29725837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control.
    Hwang JY; Lee SA; Lee YH; Seok SI
    ACS Appl Mater Interfaces; 2010 May; 2(5):1343-8. PubMed ID: 20420438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers.
    Sun B; Greenham NC
    Phys Chem Chem Phys; 2006 Aug; 8(30):3557-60. PubMed ID: 16871346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanowire dye-sensitized solar cells.
    Law M; Greene LE; Johnson JC; Saykally R; Yang P
    Nat Mater; 2005 Jun; 4(6):455-9. PubMed ID: 15895100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomolecular recognition in DNA tagged CdSe nanowires.
    Sarangi SN; Goswami K; Sahu SN
    Biosens Bioelectron; 2007 Jun; 22(12):3086-91. PubMed ID: 17296294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photo-gated charge transfer of organized assemblies of CdSe quantum dots.
    Pradhan S; Chen S; Wang S; Zou J; Kauzlarich SM; Louie AY
    Langmuir; 2006 Jan; 22(2):787-93. PubMed ID: 16401132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes.
    Lee HJ; Chang DW; Park SM; Zakeeruddin SM; Grätzel M; Nazeeruddin MK
    Chem Commun (Camb); 2010 Dec; 46(46):8788-90. PubMed ID: 20957271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells.
    Kim J; Choi S; Noh J; Yoon S; Lee S; Noh T; Frank AJ; Hong K
    Langmuir; 2009 May; 25(9):5348-51. PubMed ID: 19249822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution.
    Walker BJ; Dorn A; Bulović V; Bawendi MG
    Nano Lett; 2011 Jul; 11(7):2655-9. PubMed ID: 21615089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance photoconductive channels based on (carbon nanotube)-(CdS nanowire) hybrid nanostructures.
    Lee H; Heo K; Maaroof A; Park Y; Noh S; Park J; Jian J; Lee C; Seong MJ; Hong S
    Small; 2012 Jun; 8(11):1650-6. PubMed ID: 22434722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.