These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22311253)

  • 1. Intermittency in processing explains the diversity and shape of functional grazing responses.
    Wirtz KW
    Oecologia; 2012 Aug; 169(4):879-94. PubMed ID: 22311253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean.
    Lu X; Weisse T
    Sci Rep; 2022 Jun; 12(1):10501. PubMed ID: 35732678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing.
    Chenillat F; Rivière P; Ohman MD
    PLoS One; 2021; 16(5):e0252033. PubMed ID: 34033649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling.
    Morozov AY
    J Theor Biol; 2010 Jul; 265(1):45-54. PubMed ID: 20406647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carnivorous planktonic Difflugia (Protista, Amoebina Testacea) and their predators.
    Han BP; Wang T; Xu L; Lin QQ; Jinyu Z; Dumont HJ
    Eur J Protistol; 2011 Aug; 47(3):214-23. PubMed ID: 21632222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant plankton patchiness induced by large-scale turbulent flow.
    McKiver WJ; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016303. PubMed ID: 21405770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copepod growth and diatoms: insensitivity of Acartia tonsa to the composition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios in mesocosms.
    Sommer U
    Oecologia; 2009 Feb; 159(1):207-15. PubMed ID: 18985392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-scale patchiness enhances trophic transfer efficiency and potential plankton biodiversity.
    Priyadarshi A; Smith SL; Mandal S; Tanaka M; Yamazaki H
    Sci Rep; 2019 Nov; 9(1):17243. PubMed ID: 31754195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internally driven alternation of functional traits in a multispecies predator-prey system.
    Tirok K; Gaedke U
    Ecology; 2010 Jun; 91(6):1748-62. PubMed ID: 20583716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey.
    Jeong HJ; Kim JS; Lee KH; Seong KA; Yoo YD; Kang NS; Kim TH; Song JY; Kwon JE
    Harmful Algae; 2017 Feb; 62():37-51. PubMed ID: 28118891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities.
    Ray JL; Althammer J; Skaar KS; Simonelli P; Larsen A; Stoecker D; Sazhin A; Ijaz UZ; Quince C; Nejstgaard JC; Frischer M; Pohnert G; Troedsson C
    Mol Ecol; 2016 Nov; 25(21):5585-5602. PubMed ID: 27662431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton.
    Yang JW; Wu W; Chung CC; Chiang KP; Gong GC; Hsieh CH
    ISME J; 2018 Jun; 12(6):1532-1542. PubMed ID: 29703955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rotifers, copepods and chironomid larvae on microbial communities in peatlands.
    Mieczan T; Niedźwiecki M; Tarkowska-Kukuryk M
    Eur J Protistol; 2015 Oct; 51(5):386-400. PubMed ID: 26322497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment.
    Vadstein O; Olsen LM; Andersen T
    Ecology; 2012 Aug; 93(8):1795-801. PubMed ID: 22928408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond body mass: how prey traits improve predictions of functional response parameters.
    Kalinoski RM; DeLong JP
    Oecologia; 2016 Feb; 180(2):543-50. PubMed ID: 26552379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring parameters of prey switching in a 1 predator-2 prey plankton system with a linear preference tradeoff.
    Piltz SH; Harhanen L; Porter MA; Maini PK
    J Theor Biol; 2018 Nov; 456():108-122. PubMed ID: 30009794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod.
    Kumar R; Kumari S; Malika A; Sharma AP; Dahms HU
    Sci Rep; 2022 Dec; 12(1):22631. PubMed ID: 36587046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up behaviourally mediated trophic cascades in plankton food webs.
    van Someren Gréve H; Kiørboe T; Almeda R
    Proc Biol Sci; 2019 Feb; 286(1896):20181664. PubMed ID: 30963919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planktonic ciliates in a hypertrophic pond: functional role and importance.
    Sanchez Rodriguez Mdel R; Lugo Vazquez A; Oliva Martinez MG; Verver y Vargas JG; Rodriguez Rocha A; Peralta Soriano L
    J Environ Biol; 2011 Jul; 32(4):497-503. PubMed ID: 22315829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.