These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2231149)

  • 1. Poly(L-lactide) implants in repair of defects of the orbital floor: an animal study.
    Rozema FR; Bos RR; Pennings AJ; Jansen HW
    J Oral Maxillofac Surg; 1990 Dec; 48(12):1305-9; discussion 1310. PubMed ID: 2231149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of 2 implants used to repair inferior orbital wall bony defects: autogenous bone graft versus bioresorbable poly-L/DL-Lactide [P(L/DL)LA 70/30] plate.
    Al-Sukhun J; Lindqvist C
    J Oral Maxillofac Surg; 2006 Jul; 64(7):1038-48. PubMed ID: 16781336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(L-lactide) implants for repair of human orbital floor defects: clinical and magnetic resonance imaging evaluation of long-term results.
    Cordewener FW; Bos RR; Rozema FR; Houtman WA
    J Oral Maxillofac Surg; 1996 Jan; 54(1):9-13; discussion 13-4. PubMed ID: 8531006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The natural history of alloplastic implants in orbital floor reconstruction: an animal model.
    Dougherty WR; Wellisz T
    J Craniofac Surg; 1994 Feb; 5(1):26-32; discussion 33. PubMed ID: 8031975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined use of titanium mesh and resorbable PLLA-PGA implant in the treatment of large orbital floor fractures.
    Magaña FG; Arzac RM; De Hilario Avilés L
    J Craniofac Surg; 2011 Nov; 22(6):1991-5. PubMed ID: 22067850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges associated with regeneration of orbital floor bone.
    Betz MW; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    Tissue Eng Part B Rev; 2010 Oct; 16(5):541-50. PubMed ID: 20645879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital floor reconstruction with poly-L/D-lactide implants: clinical, radiological and immunohistochemical study in sheep.
    Kontio R; Suuronen R; Konttinen YT; Hallikainen D; Lindqvist C; Kommonen B; Kellomäki M; Kylmä T; Virtanen I; Laine P
    Int J Oral Maxillofac Surg; 2004 Jun; 33(4):361-8. PubMed ID: 15145039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of orbital floor fractures with bioactive glass implants.
    Aitasalo K; Kinnunen I; Palmgren J; Varpula M
    J Oral Maxillofac Surg; 2001 Dec; 59(12):1390-5; discussion 1395-6. PubMed ID: 11732018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates.
    Lieger O; Schaller B; Zix J; Kellner F; Iizuka T
    Arch Facial Plast Surg; 2010; 12(6):399-404. PubMed ID: 21079117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital stress analysis: part III: biomechanics of orbital blowout fracture repair using bioresorbable poly-L/DL-lactide (P[L/DL]LA 70:30) implant.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2011 Jul; 22(4):1299-303. PubMed ID: 21772200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioresorbable poly-L/DL-lactide (P[L/DL]LA 70/30) plates are reliable for repairing large inferior orbital wall bony defects: a pilot study.
    Al-Sukhun J; Törnwall J; Lindqvist C; Kontio R
    J Oral Maxillofac Surg; 2006 Jan; 64(1):47-55. PubMed ID: 16360856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate and long-term results of unsintered hydroxyapatite and poly L-lactide composite sheets for orbital wall fracture reconstruction.
    Kohyama K; Morishima Y; Arisawa K; Arisawa Y; Kato H
    J Plast Reconstr Aesthet Surg; 2018 Jul; 71(7):1069-1075. PubMed ID: 29759951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of expanded polytetrafluoroethylene for reconstruction of orbital floor defects.
    Hanson LJ; Donovan MG; Hellstein JW; Dickerson NC
    J Oral Maxillofac Surg; 1994 Oct; 52(10):1050-5; discussion 1056-7. PubMed ID: 8089791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of diaphyseal bone defects using resorbable poly(L/DL-lactide) and poly(D-lactide) membranes in the Yucatan pig model.
    Meinig RP; Buesing CM; Helm J; Gogolewski S
    J Orthop Trauma; 1997 Nov; 11(8):551-8. PubMed ID: 9415860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoscopic exploration of the orbital floor: a technique for transantral grafting of floor blowout fractures.
    Mohammad JA; Warnke PH; Shenaq SM
    J Craniomaxillofac Trauma; 1998; 4(2):16-9; discussion 15. PubMed ID: 11951428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction.
    Lee H; Baek S
    J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A use of poly-L-lactide, D-lactide sheet on posterior orbital floor fracture.
    Hwang K; Kim DH; Park IS
    J Craniofac Surg; 2010 Jul; 21(4):1221-3. PubMed ID: 20613622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vegetal polymer in repair of defects of the orbital floor: an experimental study in rabbits.
    Schellini SA; Nunes EL; Pellizzon CH; Hirai FE; Schellini RC; Padovani CR
    Clin Exp Ophthalmol; 2012 Dec; 40(9):874-80. PubMed ID: 22594824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2012 Jan; 23(1):126-30. PubMed ID: 22337388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect.
    Kwon H; Kim HJ; Seo BF; Jeong YJ; Jung SN; Shim HS
    Biomed Res Int; 2016; 2016():1358312. PubMed ID: 27517041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.