These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22311559)
1. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Varouchakis EA; Hristopulos DT Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559 [TBL] [Abstract][Full Text] [Related]
2. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Mirzaei R; Sakizadeh M Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732 [TBL] [Abstract][Full Text] [Related]
3. Improvement of water table interpolation and groundwater storage volume using fuzzy computations. Masoumi Z; Rezaei A; Maleki J Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content]. Hu KL; Li BG; Lu YZ; Zhang FR Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270 [TBL] [Abstract][Full Text] [Related]
5. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743 [TBL] [Abstract][Full Text] [Related]
6. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Elumalai V; Brindha K; Sithole B; Lakshmanan E Environ Sci Pollut Res Int; 2017 Apr; 24(12):11601-11617. PubMed ID: 28324252 [TBL] [Abstract][Full Text] [Related]
8. Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods. Arslan H Environ Monit Assess; 2014 Aug; 186(8):5123-34. PubMed ID: 24729182 [TBL] [Abstract][Full Text] [Related]
9. Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods. Liu R; Chen Y; Sun C; Zhang P; Wang J; Yu W; Shen Z Mar Pollut Bull; 2014 Sep; 86(1-2):68-75. PubMed ID: 25113104 [TBL] [Abstract][Full Text] [Related]
10. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination. Fischer A; Lee MK; Ojeda AS; Rogers SR J Environ Manage; 2021 Feb; 280():111683. PubMed ID: 33246756 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Gong G; Mattevada S; O'Bryant SE Environ Res; 2014 Apr; 130():59-69. PubMed ID: 24559533 [TBL] [Abstract][Full Text] [Related]
12. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Arslan H; Ayyildiz Turan N Environ Monit Assess; 2015 Aug; 187(8):516. PubMed ID: 26202813 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Rostami AA; Isazadeh M; Shahabi M; Nozari H Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709 [TBL] [Abstract][Full Text] [Related]
14. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach. Moya CE; Raiber M; Taulis M; Cox ME Sci Total Environ; 2015 Mar; 508():411-26. PubMed ID: 25497681 [TBL] [Abstract][Full Text] [Related]
15. Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China. Qu L; Xiao H; Zheng N; Zhang Z; Xu Y Environ Sci Pollut Res Int; 2017 Jan; 24(3):2578-2588. PubMed ID: 27826827 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
17. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. Zarco-Perello S; Simões N PeerJ; 2017; 5():e4078. PubMed ID: 29204321 [TBL] [Abstract][Full Text] [Related]
18. Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Nikroo L; Kompani-Zare M; Sepaskhah AR; Shamsi SR Environ Monit Assess; 2010 Jul; 166(1-4):387-407. PubMed ID: 19533399 [TBL] [Abstract][Full Text] [Related]
19. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping. Fazeli Sangani M; Namdar Khojasteh D; Owens G Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465 [TBL] [Abstract][Full Text] [Related]
20. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]