BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22311591)

  • 1. Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids.
    Martínez CM; Alvarez LH; Cervantes FJ
    Biodegradation; 2012 Sep; 23(5):635-44. PubMed ID: 22311591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants.
    Cervantes FJ; Gonzalez-Estrella J; Márquez A; Alvarez LH; Arriaga S
    Bioresour Technol; 2011 Jan; 102(2):2097-100. PubMed ID: 20801024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge.
    Cervantes FJ; Vu-Thi-Thu L; Lettinga G; Field JA
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):702-11. PubMed ID: 14762702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.
    Martínez CM; Celis LB; Cervantes FJ
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9897-905. PubMed ID: 24013221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01.
    Wang Y; Wu C; Wang X; Zhou S
    J Hazard Mater; 2009 May; 164(2-3):941-7. PubMed ID: 18849114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene.
    Aulenta F; Maio VD; Ferri T; Majone M
    Bioresour Technol; 2010 Dec; 101(24):9728-33. PubMed ID: 20709536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of redox capacity of humic acids on hexachlorobenzene dechlorination during the anaerobic digestion process.
    Li D; Xi B; Li Y; Wang X; Yang T; Yu H; Huang C; Zhu J; Li Q; Peng X; Ma Z
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):6099-6106. PubMed ID: 30617881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.
    Cervantes FJ; Martínez CM; Gonzalez-Estrella J; Márquez A; Arriaga S
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2671-9. PubMed ID: 22565330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.
    He D; Guan X; Ma J; Yu M
    Environ Sci Technol; 2009 Nov; 43(21):8332-7. PubMed ID: 19924965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid.
    Zhang Z; Cissoko N; Wo J; Xu X
    J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.
    Siglova M; Cejkova A; Masak J; Jirku V; Snajdr J; Valina O
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):199-202. PubMed ID: 15296162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.
    Bhushan B; Halasz A; Hawari J
    J Appl Microbiol; 2006 Mar; 100(3):555-63. PubMed ID: 16478495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenol biodegradation and simultaneous nitrogen removal using a carbon fiber felt biofilm reactor.
    Chen Y; Liu M; Xu F; Zhu S; Shen S
    Water Sci Technol; 2010; 62(5):1052-9. PubMed ID: 20818045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the effect of humic acid redox state on organic pollutant sorption by combined electrochemical reduction and sorption experiments.
    Aeschbacher M; Brunner SH; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2012 Apr; 46(7):3882-90. PubMed ID: 22372874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential application of electron donors and humic acids for the anaerobic bioremediation of chlorinated aliphatic hydrocarbons.
    Scherr KE; Nahold MM; Lantschbauer W; Loibner AP
    N Biotechnol; 2011 Dec; 29(1):116-25. PubMed ID: 21600322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous anaerobic transformation of carbon tetrachloride to carbon dioxide and tetrachloroethene to ethene in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2017 Aug; 203():93-103. PubMed ID: 28716488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of organic fractions on sorption properties of organic pollutants in sediments.
    Chen HL; Zhou JM; Chen YX; Xu YT
    J Environ Sci (China); 2005; 17(2):200-4. PubMed ID: 16295888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of microbial redox conditions on the phase distribution of pyrene in soil-water systems.
    Kim HS; Roper JC; Pfaender FK
    Environ Pollut; 2008 Mar; 152(1):106-15. PubMed ID: 17629603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides.
    Salvestrini S; Capasso S; Iovino P
    Pest Manag Sci; 2008 Jul; 64(7):768-74. PubMed ID: 18318456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.