These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22311591)

  • 21. Effects of biodegradation and sorption by humic acid on the estrogenicity of 17β-estradiol.
    Lee JH; Zhou JL; Kim SD
    Chemosphere; 2011 Nov; 85(8):1383-9. PubMed ID: 21872903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of chlorinated methanes with nano-scale Fe particles: effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction.
    Feng J; Zhu BW; Lim TT
    Chemosphere; 2008 Dec; 73(11):1817-23. PubMed ID: 18809199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The spatial distribution of eubacteria and archaea in sand-clay columns degrading carbon tetrachloride and methanol.
    da P Lima G; Sleep BE
    J Contam Hydrol; 2007 Oct; 94(1-2):34-48. PubMed ID: 17644217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids.
    Aeschbacher M; Vergari D; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2011 Oct; 45(19):8385-94. PubMed ID: 21823669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insoluble Fe-humic acid complex as a solid-phase electron mediator for microbial reductive dechlorination.
    Zhang C; Zhang D; Li Z; Akatsuka T; Yang S; Suzuki D; Katayama A
    Environ Sci Technol; 2014 Jun; 48(11):6318-25. PubMed ID: 24758743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atrazine biodegradation modulated by clays and clay/humic acid complexes.
    Besse-Hoggan P; Alekseeva T; Sancelme M; Delort AM; Forano C
    Environ Pollut; 2009 Oct; 157(10):2837-44. PubMed ID: 19419808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal change in the distribution patterns of hexachlorobenzene and dichlorodiphenyltrichloroethane among various soil organic matter fractions.
    Zhang JJ; Wen B; Shan XQ; Zhang S; Khan SU
    Environ Pollut; 2007 Nov; 150(2):234-42. PubMed ID: 17374425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B(12) biosynthesis.
    Guerrero-Barajas C; Field JA
    Biodegradation; 2006 Aug; 17(4):317-29. PubMed ID: 16491307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins.
    Guerrero-Barajas C; Field JA
    Biodegradation; 2005 Jun; 16(3):215-28. PubMed ID: 15865146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria.
    Koenig JC; Lee MJ; Manefield M
    J Hazard Mater; 2012 Jun; 219-220():169-75. PubMed ID: 22503214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH.
    Chang Chien SW; Chen CY; Chang JH; Chen SH; Wang MC; Mannepalli MR
    J Hazard Mater; 2010 May; 177(1-3):1068-76. PubMed ID: 20106594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of acetanilide herbicides acetochlor and butachlor in soil.
    Ye CM; Wang XJ; Zheng HH
    J Environ Sci (China); 2002 Oct; 14(4):524-9. PubMed ID: 12491727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions.
    Xia J; Li Y; Jiang X; Chen D; Shen J
    J Hazard Mater; 2023 Jul; 453():131426. PubMed ID: 37084513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate.
    He D; Guan X; Ma J; Yang X; Cui C
    J Hazard Mater; 2010 Oct; 182(1-3):681-8. PubMed ID: 20633987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation.
    Penny C; Vuilleumier S; Bringel F
    FEMS Microbiol Ecol; 2010 Nov; 74(2):257-75. PubMed ID: 20695893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB.
    Wang J; Zhou Y; Li P; Lu H; Jin R; Liu G
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3162-72. PubMed ID: 25604954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of phenol, o-cresol, and p-cresol with a clay-rich soil sample.
    Dolatto RG; Messerschmidt I; Pereira BF; de Oliveira T; Pillon CN; Abate G
    J Agric Food Chem; 2010 Feb; 58(4):2426-32. PubMed ID: 20095566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability.
    Soler-Rovira P; Madejón E; Madejón P; Plaza C
    Chemosphere; 2010 May; 79(8):844-9. PubMed ID: 20303567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compost effect on soil humic acid: A NMR study.
    Adani F; Genevini P; Tambone F; Montoneri E
    Chemosphere; 2006 Nov; 65(8):1414-8. PubMed ID: 16698065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.