These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22311591)

  • 41. Modification of soil humic matter after 4 years of compost application.
    Adani F; Genevini P; Ricca G; Tambone F; Montoneri E
    Waste Manag; 2007; 27(2):319-24. PubMed ID: 16759842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into phenol monomers in response to electron transfer capacity of humic acid during corn straw composting process.
    Zhao X; Zhang C; Dang Q; Xi B
    Environ Pollut; 2022 Aug; 307():119548. PubMed ID: 35644430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes.
    Shan H; Kurtz HD; Freedman DL
    Water Res; 2010 Mar; 44(5):1317-28. PubMed ID: 19945730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds: exogenously supplied energy and carbon sources adjust the level of biodegradation.
    Papazi A; Kotzabasis K
    J Biotechnol; 2007 May; 129(4):706-16. PubMed ID: 17403549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retention and extractability of phenol, cresol, and dichlorophenol exposed to two surface soils in the presence of horseradish peroxidase enzyme.
    Xu F; Bhandari A
    J Agric Food Chem; 2003 Jan; 51(1):183-8. PubMed ID: 12502405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals.
    Chien SW; Wang MC; Huang CC; Seshaiah K
    J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of the stable fraction (the core) of the humic acid.
    Adani F; Ricca G; Tambone F; Genevini P
    Chemosphere; 2006 Nov; 65(8):1300-7. PubMed ID: 16735055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Degradation of carbon tetrachloride in the presence of zero-valent iron.
    Alvarado JS; Rose C; Lafreniere L
    J Environ Monit; 2010 Aug; 12(8):1524-30. PubMed ID: 20596593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion.
    Choi K; Lee W
    J Hazard Mater; 2009 Dec; 172(2-3):623-30. PubMed ID: 19660864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The spectroscopic studies of humic acid extracted from sediment collected at different seasons.
    Polak J; Bartoszek M; Ządło M; Kos A; Sułkowski WW
    Chemosphere; 2011 Sep; 84(11):1548-55. PubMed ID: 21700314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor.
    Christen P; Davidson S; Combet-Blanc Y; Auria R
    Biodegradation; 2011 Jun; 22(3):475-84. PubMed ID: 20886261
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rate of bentazone transformation in four layers of a humic sandy soil profile with fluctuating water table.
    Leistra M; Smelt JH; Matser AM; Bogte JJ; van der Pas LJ
    Pest Manag Sci; 2001 Nov; 57(11):1023-32. PubMed ID: 11721519
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of humic acids on determining polyhydroxy phenol by flow-injection chemiluminescence].
    Ding BJ; Yang FL; Zhu ZL; Xiao G; Cui LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):530-3. PubMed ID: 18536405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation, selection and biodegradation profile of phenol degrading bacteria from oil contaminated soil.
    Mohite BV; Pawar SP; Morankar A
    Bull Environ Contam Toxicol; 2011 Aug; 87(2):143-6. PubMed ID: 21643832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrofocusing the compost organic matter obtained by coupling SEC-PAGE.
    Cavani L; Trubetskaya O; Grigatti M; Trubetskoj O; Ciavatta C
    Bioresour Technol; 2008 Jul; 99(10):4360-7. PubMed ID: 17959377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin.
    Pan B; Xing BS; Liu WX; Tao S; Lin XM; Zhang XM; Zhang YX; Xiao Y; Dai HC; Yuan HS
    Environ Pollut; 2006 Sep; 143(1):24-33. PubMed ID: 16376468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river.
    Xu B; Mao D; Luo Y; Xu L
    Bioresour Technol; 2011 Jul; 102(14):7069-76. PubMed ID: 21596556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long-term effect of sewage sludge application on soil humic acids.
    Adani F; Tambone F
    Chemosphere; 2005 Sep; 60(9):1214-21. PubMed ID: 16018891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge.
    Moura MN; Martín MJ; Burguillo FJ
    J Hazard Mater; 2007 Oct; 149(1):42-8. PubMed ID: 17475400
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.
    Kumar P; Nemati M; Hill GA
    Biodegradation; 2011 Nov; 22(6):1087-93. PubMed ID: 21380603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.