These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22311644)

  • 1. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases.
    Bohlin C; Praestgaard E; Baumann MJ; Borch K; Praestgaard J; Monrad RN; Westh P
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):159-69. PubMed ID: 22311644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of activity and apparent inhibition of fungal β-glucosidases.
    Bohlin C; Olsen SN; Morant MD; Patkar S; Borch K; Westh P
    Biotechnol Bioeng; 2010 Dec; 107(6):943-52. PubMed ID: 20677177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and molecular dynamics study of inhibition and transglycosylation in
    Geronimo I; Ntarima P; Piens K; Gudmundsson M; Hansson H; Sandgren M; Payne CM
    J Biol Chem; 2019 Mar; 294(9):3169-3180. PubMed ID: 30602567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei.
    Guo B; Sato N; Biely P; Amano Y; Nozaki K
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4959-68. PubMed ID: 26846743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi.
    Ng IS; Tsai SW; Ju YM; Yu SM; Ho TH
    Bioresour Technol; 2011 May; 102(10):6073-81. PubMed ID: 21377353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic model for cellulosic biomass hydrolysis: a comprehensive analysis and validation of hydrolysis and product inhibition mechanisms.
    Tsai CT; Morales-Rodriguez R; Sin G; Meyer AS
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2815-37. PubMed ID: 24446172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxynojirimycin enhanced the transglycosylation activity of a glycosidase from the China white jade snail.
    Hu Y; Luan H; Ge G; Liu H; Zhang Y; Zhou K; Liu Y; Yang L
    J Biotechnol; 2009 Feb; 139(3):229-35. PubMed ID: 19124049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting β-glucosidases to support cellulases in cellulose saccharification.
    Teugjas H; Väljamäe P
    Biotechnol Biofuels; 2013 Jul; 6(1):105. PubMed ID: 23883540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pH upon the kinetic parameters of the enzymatic hydrolysis of cellobiose with Novozym 188.
    Bravo V; Páez MP; Aoulad M; Reyes A; García AI
    Biotechnol Prog; 2001; 17(1):104-9. PubMed ID: 11170487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.
    Sørensen A; Lübeck PS; Lübeck M; Teller PJ; Ahring BK
    Can J Microbiol; 2011 Aug; 57(8):638-50. PubMed ID: 21815831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic analysis of kinetic mechanism of hydrolysis of cellobiose by β-glucosidase.
    Resa P; Buckin V
    Anal Biochem; 2011 Aug; 415(1):1-11. PubMed ID: 21385562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of novel β-glucosidases with transglycosylation properties from Trichosporon asahii.
    Wang Y; Li J; Xu Y
    J Agric Food Chem; 2011 Oct; 59(20):11219-27. PubMed ID: 21916502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis and transglycosylation activity of a thermostable recombinant beta-glycosidase from Sulfolobus acidocaldarius.
    Park AR; Kim HJ; Lee JK; Oh DK
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2236-47. PubMed ID: 19626290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of p-nitrophenyl-β-D-cellobioside hydrolysis and transglycosylation by Thermobifida fusca Cel5Acd.
    Dingee JW; Anton AB
    Carbohydr Res; 2010 Nov; 345(17):2507-15. PubMed ID: 20951981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multistage process to enhance cellobiose production from cellulosic materials.
    Vanderghem C; Boquel P; Blecker C; Paquot M
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2300-7. PubMed ID: 19669625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of cellobiose hydrolysis using cellobiase composites from Ttrichoderma reesei and Aspergillus niger.
    Grous W; Converse A; Grethlein H; Lynd L
    Biotechnol Bioeng; 1985 Apr; 27(4):463-70. PubMed ID: 18553694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium.
    Kawai R; Igarashi K; Kitaoka M; Ishii T; Samejima M
    Carbohydr Res; 2004 Dec; 339(18):2851-7. PubMed ID: 15582611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.