These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 22311743)
1. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints. Sanabria EA; Quiroga LB; Martino AL J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):185-93. PubMed ID: 22311743 [TBL] [Abstract][Full Text] [Related]
2. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest. Anderson RCO; Bovo RP; Andrade DV J Therm Biol; 2018 May; 74():77-83. PubMed ID: 29801654 [TBL] [Abstract][Full Text] [Related]
3. Thermal ecology of the post-metamorphic Andean toad (Rhinella spinulosa) at elevation in the monte desert, Argentina. Sanabria EA; Rodríguez CY; Vergara C; Ontivero E; Banchig M; Navas AL; Herrera-Morata MA; Quiroga LB J Therm Biol; 2015 Aug; 52():52-7. PubMed ID: 26267498 [TBL] [Abstract][Full Text] [Related]
4. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567 [TBL] [Abstract][Full Text] [Related]
5. Predicting the physiological performance of ectotherms in fluctuating thermal environments. Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077 [TBL] [Abstract][Full Text] [Related]
6. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Hadamová M; Gvoždík L Physiol Biochem Zool; 2011; 84(2):166-74. PubMed ID: 21460527 [TBL] [Abstract][Full Text] [Related]
7. Metabolic compensation and behavioral thermoregulation of subtropical rhacophorid (Polypedates megacephalus) tadpoles in container habitats. Wu HJ; Yen CF; Kam YC Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):101-6. PubMed ID: 17197216 [TBL] [Abstract][Full Text] [Related]
8. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL; Fernández JB; Ibargüengoytía NR J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [TBL] [Abstract][Full Text] [Related]
10. Season-sex interaction induces changes in the ecophysiological traits of a lizard in a high altitude cold desert, Puna region. Gómez Alés R; Acosta JC; Astudillo V; Córdoba M J Therm Biol; 2022 Jan; 103():103152. PubMed ID: 35027202 [TBL] [Abstract][Full Text] [Related]
11. [Feeding of two amphibian species (Anura: Hylidae) during the low temperatures season and its relationship with energy storage in Santa Fe, Argentina]. Antoniazzi CE; López JA; Duré M; Falico DA Rev Biol Trop; 2013 Jun; 61(2):875-86. PubMed ID: 23885597 [TBL] [Abstract][Full Text] [Related]
12. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Seebacher F; Franklin CE J Exp Biol; 2011 May; 214(Pt 9):1437-44. PubMed ID: 21490252 [TBL] [Abstract][Full Text] [Related]
13. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666 [TBL] [Abstract][Full Text] [Related]
14. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Perotti MG; Bonino MF; Ferraro D; Cruz FB Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379 [TBL] [Abstract][Full Text] [Related]
15. Floral reflectance, color, and thermoregulation: what really explains geographic variation in thermal acclimation ability of ectotherms? Lacey EP; Lovin ME; Richter SJ; Herington DA Am Nat; 2010 Mar; 175(3):335-49. PubMed ID: 20100107 [TBL] [Abstract][Full Text] [Related]
16. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Tomanek L J Exp Biol; 2010 Mar; 213(6):971-9. PubMed ID: 20190122 [TBL] [Abstract][Full Text] [Related]
17. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Baudier KM; Mudd AE; Erickson SC; O'Donnell S J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696 [TBL] [Abstract][Full Text] [Related]
18. Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms? Aubret F; Shine R J Exp Biol; 2010 Jan; 213(2):242-8. PubMed ID: 20038657 [TBL] [Abstract][Full Text] [Related]
19. Thermal biology in two syntopic lizards, Phymaturus extrilidus and Liolaemus parvus, in the Puna region of Argentina. Gómez Alés R; Acosta JC; Laspiur A J Therm Biol; 2017 Aug; 68(Pt A):73-82. PubMed ID: 28689724 [TBL] [Abstract][Full Text] [Related]
20. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]