BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 22311983)

  • 1. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region.
    Sandilos JK; Chiu YH; Chekeni FB; Armstrong AJ; Walk SF; Ravichandran KS; Bayliss DA
    J Biol Chem; 2012 Mar; 287(14):11303-11. PubMed ID: 22311983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.
    Chekeni FB; Elliott MR; Sandilos JK; Walk SF; Kinchen JM; Lazarowski ER; Armstrong AJ; Penuela S; Laird DW; Salvesen GS; Isakson BE; Bayliss DA; Ravichandran KS
    Nature; 2010 Oct; 467(7317):863-7. PubMed ID: 20944749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pannexin-1 is blocked by its C-terminus through a delocalized non-specific interaction surface.
    Dourado M; Wong E; Hackos DH
    PLoS One; 2014; 9(6):e99596. PubMed ID: 24911976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism.
    Boyd-Tressler A; Penuela S; Laird DW; Dubyak GR
    J Biol Chem; 2014 Sep; 289(39):27246-27263. PubMed ID: 25112874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of human pannexin 1 reveal ion pathways and mechanism of gating.
    Ruan Z; Orozco IJ; Du J; Lü W
    Nature; 2020 Aug; 584(7822):646-651. PubMed ID: 32494015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels.
    Narahari AK; Kreutzberger AJ; Gaete PS; Chiu YH; Leonhardt SA; Medina CB; Jin X; Oleniacz PW; Kiessling V; Barrett PQ; Ravichandran KS; Yeager M; Contreras JE; Tamm LK; Bayliss DA
    Elife; 2021 Jan; 10():. PubMed ID: 33410749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational effects of Pannexin 1 R217H depend on the carboxyl-terminus.
    Purohit R; Bera AK
    Biochem Biophys Res Commun; 2021 Apr; 548():143-147. PubMed ID: 33640607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantized mechanism for activation of pannexin channels.
    Chiu YH; Jin X; Medina CB; Leonhardt SA; Kiessling V; Bennett BC; Shu S; Tamm LK; Yeager M; Ravichandran KS; Bayliss DA
    Nat Commun; 2017 Jan; 8():14324. PubMed ID: 28134257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock.
    Yang D; He Y; Muñoz-Planillo R; Liu Q; Núñez G
    Immunity; 2015 Nov; 43(5):923-32. PubMed ID: 26572062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties.
    Palacios-Prado N; Soto PA; López X; Choi EJ; Marquez-Miranda V; Rojas M; Duarte Y; Lee J; González-Nilo FD; Sáez JC
    Proc Natl Acad Sci U S A; 2022 May; 119(18):e2202104119. PubMed ID: 35486697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on channel properties and induction of cell death induced by c-terminal truncations of pannexin1 depend on domain length.
    Engelhardt K; Schmidt M; Tenbusch M; Dermietzel R
    J Membr Biol; 2015 Apr; 248(2):285-94. PubMed ID: 25567359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pannexin1: a multifunction and multiconductance and/or permeability membrane channel.
    Wang J; Dahl G
    Am J Physiol Cell Physiol; 2018 Sep; 315(3):C290-C299. PubMed ID: 29719171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatin inhibits pannexin-1-mediated whole-cell currents by interacting with its carboxyl terminal.
    Zhan H; Moore CS; Chen B; Zhou X; Ma XM; Ijichi K; Bennett MV; Li XJ; Crocker SJ; Wang ZW
    PLoS One; 2012; 7(6):e39489. PubMed ID: 22768083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator-dependent bicarbonate entry controls rat cardiomyocyte ATP release via pannexin1 through mitochondrial signalling and caspase activation.
    Wang Y; Zhao J; Cai Y; Ballard HJ
    Acta Physiol (Oxf); 2020 Sep; 230(1):e13495. PubMed ID: 32386453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological mechanisms for the modulation of pannexin 1 channel activity.
    Sandilos JK; Bayliss DA
    J Physiol; 2012 Dec; 590(24):6257-66. PubMed ID: 23070703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse post-translational modifications of the pannexin family of channel-forming proteins.
    Penuela S; Lohman AW; Lai W; Gyenis L; Litchfield DW; Isakson BE; Laird DW
    Channels (Austin); 2014; 8(2):124-30. PubMed ID: 24418849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic properties and regulation of Pannexin 1 channel.
    Chiu YH; Ravichandran KS; Bayliss DA
    Channels (Austin); 2014; 8(2):103-9. PubMed ID: 24419036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pannexin-1 promotes NLRP3 activation during apoptosis but is dispensable for canonical or noncanonical inflammasome activation.
    Chen KW; Demarco B; Broz P
    Eur J Immunol; 2020 Feb; 50(2):170-177. PubMed ID: 31411729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation.
    Li G; Zhang Q; Hong J; Ritter JK; Li PL
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Oct; 1863(10):1246-1256. PubMed ID: 30077007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural order in Pannexin 1 cytoplasmic domains.
    Spagnol G; Sorgen PL; Spray DC
    Channels (Austin); 2014; 8(2):157-66. PubMed ID: 24751934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.