BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22312250)

  • 1. Fractionation of whey protein isolate with supercritical carbon dioxide-process modeling and cost estimation.
    Yver AL; Bonnaillie LM; Yee W; McAloon A; Tomasula PM
    Int J Mol Sci; 2012; 13(1):240-59. PubMed ID: 22312250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients.
    Bonnaillie LM; Tomasula PM
    J Agric Food Chem; 2012 May; 60(20):5257-66. PubMed ID: 22559165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process steps for the preparation of purified fractions of alpha-lactalbumin and beta-lactoglobulin from whey protein concentrates.
    Gésan-Guiziou G; Daufin G; Timmer M; Allersma D; van der Horst C
    J Dairy Res; 1999 May; 66(2):225-36. PubMed ID: 10376243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification.
    Lisak K; Toro-Sierra J; Kulozik U; Božanić R; Cheison SC
    J Dairy Res; 2013 Feb; 80(1):14-20. PubMed ID: 23317562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration.
    Bonnaillie LM; Qi P; Wickham E; Tomasula PM
    Foods; 2014 Jan; 3(1):94-109. PubMed ID: 28234306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure.
    Marciniak A; Suwal S; Touhami S; Chamberland J; Pouliot Y; Doyen A
    J Dairy Sci; 2020 Sep; 103(9):7939-7950. PubMed ID: 32622608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the response surface methodology for optimization of whey protein partitioning in PEG/phosphate aqueous two-phase system.
    Alcântara LA; Minim LA; Minim VP; Bonomo RC; da Silva LH; da Silva Mdo C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jul; 879(21):1881-5. PubMed ID: 21621485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High pressure-induced denaturation of alpha-lactalbumin and beta-lactoglobulin in bovine milk and whey: a possible mechanism.
    Huppertz T; Fox PF; Kelly AL
    J Dairy Res; 2004 Nov; 71(4):489-95. PubMed ID: 15605716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.
    Tarhan O; Harsa S
    Biotechnol Prog; 2014; 30(6):1301-10. PubMed ID: 25079253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment.
    Havea P; Singh H; Creamer LK
    J Dairy Res; 2001 Aug; 68(3):483-97. PubMed ID: 11694050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Preheating Temperature on the Separation of Whey Proteins When Combined with Chemical or Bipolar Membrane Electrochemical Acidification.
    Aspirault C; Doyen A; Bazinet L
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of Whey Proteins during Thermal Treatment Characterized by a Site-Specific LC-MS/MS-Based Proteomic Approach.
    Li C; Nielsen SB; Engholm-Keller K; Lund MN
    J Agric Food Chem; 2022 Apr; 70(14):4391-4406. PubMed ID: 35380828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure treatment of bovine milk: effects on casein micelles and whey proteins.
    Huppertz T; Fox PF; Kelly AL
    J Dairy Res; 2004 Feb; 71(1):97-106. PubMed ID: 15068072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic effects on the yield stress of whey protein isolate foams.
    Davis JP; Foegeding EA; Hansen FK
    Colloids Surf B Biointerfaces; 2004 Mar; 34(1):13-23. PubMed ID: 15261086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sulphydryl reagents on the heat stability of whey protein isolate.
    Wijayanti HB; Bansal N; Sharma R; Deeth HC
    Food Chem; 2014 Nov; 163():129-35. PubMed ID: 24912707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caseinomacropeptide behaviour in a whey protein fractionation process based on α-lactalbumin precipitation.
    Fernández A; Menéndez V; Riera FA; Álvarez R
    J Dairy Res; 2011 May; 78(2):196-202. PubMed ID: 21411034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency enrichment of total and single whey proteins by pH controlled foam fractionation.
    Ekici P; Backleh-Sohrt M; Parlar H
    Int J Food Sci Nutr; 2005 May; 56(3):223-9. PubMed ID: 16009637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cysteine on lowering protein aggregation and subsequent hardening of whey protein isolate (WPI) protein bars in WPI/buffer model systems.
    Zhu D; Labuza TP
    J Agric Food Chem; 2010 Jul; 58(13):7970-9. PubMed ID: 20557125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective extraction of phospholipids from whey protein phospholipid concentrate using supercritical carbon dioxide and ethanol as a co-solvent.
    Sprick B; Linghu Z; Amamcharla JK; Metzger LE; Smith JS
    J Dairy Sci; 2019 Dec; 102(12):10855-10866. PubMed ID: 31548058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of casein as a binding ligand protein for purification of alpha-lactalbumin from beta-lactoglobulin under high hydrostatic pressure.
    Marciniak A; Suwal S; Brisson G; Britten M; Pouliot Y; Doyen A
    Food Chem; 2019 Mar; 275():193-196. PubMed ID: 30724187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.