These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 22312320)
1. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Sharma A; Chauhan RS Comp Funct Genomics; 2012; 2012():914843. PubMed ID: 22312320 [TBL] [Abstract][Full Text] [Related]
2. Identification of genes associated with the biosynthesis of unsaturated fatty acid and oil accumulation in herbaceous peony 'Hangshao' (Paeonia lactiflora 'Hangshao') seeds based on transcriptome analysis. Meng JS; Tang YH; Sun J; Zhao DQ; Zhang KL; Tao J BMC Genomics; 2021 Feb; 22(1):94. PubMed ID: 33522906 [TBL] [Abstract][Full Text] [Related]
3. Breeding response of transcript profiling in developing seeds of Brassica napus. Hu Y; Wu G; Cao Y; Wu Y; Xiao L; Li X; Lu C BMC Mol Biol; 2009 May; 10():49. PubMed ID: 19463193 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants. Branham SE; Wright SJ; Reba A; Morrison GD; Linder CR J Hered; 2016 May; 107(3):257-65. PubMed ID: 26865732 [TBL] [Abstract][Full Text] [Related]
5. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790 [TBL] [Abstract][Full Text] [Related]
6. Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for α-Linolenic Acid Synthesis in Seeds. Zhang QY; Yu R; Xie LH; Rahman MM; Kilaru A; Niu LX; Zhang YL Front Plant Sci; 2018; 9():106. PubMed ID: 29459881 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr. Gan Y; Song Y; Chen Y; Liu H; Yang D; Xu Q; Zheng Z BMC Plant Biol; 2018 Nov; 18(1):303. PubMed ID: 30477425 [TBL] [Abstract][Full Text] [Related]
8. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057 [TBL] [Abstract][Full Text] [Related]
9. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496 [TBL] [Abstract][Full Text] [Related]
10. Functional Characterization of Three Novel Genes Encoding Diacylglycerol Acyltransferase (DGAT) from Oil-Rich Tubers of Cyperus esculentus. Liu D; Ji H; Yang Z Plant Cell Physiol; 2020 Jan; 61(1):118-129. PubMed ID: 31532486 [TBL] [Abstract][Full Text] [Related]
11. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285 [No Abstract] [Full Text] [Related]
12. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S; Engelen S; Denolf P; Wallis JG; Lynch K; Bengtsson JD; Van Thournout M; Haesendonckx B; Browse J Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486 [TBL] [Abstract][Full Text] [Related]
13. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds. Bhattacharya S; Sinha S; Das N; Maiti MK Plant Physiol Biochem; 2015 Nov; 96():345-55. PubMed ID: 26351151 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during Nan S; Zhang L; Hu X; Miao X; Han X; Fu H Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445076 [No Abstract] [Full Text] [Related]
15. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. Zhang L; Wang SB; Li QG; Song J; Hao YQ; Zhou L; Zheng HQ; Dunwell JM; Zhang YM PLoS One; 2016; 11(5):e0154882. PubMed ID: 27159078 [TBL] [Abstract][Full Text] [Related]
16. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene. Du H; Huang M; Hu J; Li J BMC Plant Biol; 2016 Jun; 16(1):137. PubMed ID: 27297560 [TBL] [Abstract][Full Text] [Related]
17. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi J; Lang C; Wang F; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G Plant Sci; 2017 Oct; 263():177-182. PubMed ID: 28818373 [TBL] [Abstract][Full Text] [Related]
18. Integrated lipidomic and transcriptomic analyses reveal the mechanism of lipid biosynthesis and accumulation during seed development in sesame. Zhang Y; Gong H; Cui X; Gao C; Li N; Pu Y; Zhang X; Zhao J Front Plant Sci; 2023; 14():1211040. PubMed ID: 37426956 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. Guo X; Fan C; Chen Y; Wang J; Yin W; Wang RR; Hu Z BMC Plant Biol; 2017 Feb; 17(1):48. PubMed ID: 28222675 [TBL] [Abstract][Full Text] [Related]
20. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]