These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 22312463)
1. Metal preferences of zinc-binding motif on metalloproteases. Fukasawa KM; Hata T; Ono Y; Hirose J J Amino Acids; 2011; 2011():574816. PubMed ID: 22312463 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the metal-substituted dipeptidyl peptidase III (rat liver). Hirose J; Iwamoto H; Nagao I; Enmyo K; Sugao H; Kanemitu N; Ikeda K; Takeda M; Inoue M; Ikeda T; Matsuura F; Fukasawa KM; Fukasawa K Biochemistry; 2001 Oct; 40(39):11860-5. PubMed ID: 11570886 [TBL] [Abstract][Full Text] [Related]
3. The metal-binding motif of dipeptidyl peptidase III directly influences the enzyme activity in the copper derivative of dipeptidyl peptidase III. Hirose J; Kamigakiuchi H; Iwamoto H; Fujii H; Nakai M; Takenaka M; Kataoka R; Sugahara M; Yamamoto S; Fukasawa KM Arch Biochem Biophys; 2004 Nov; 431(1):1-8. PubMed ID: 15464720 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures, spectroscopic features, and catalytic properties of cobalt(II), copper(II), nickel(II), and mercury(II) derivatives of the zinc endopeptidase astacin. A correlation of structure and proteolytic activity. Gomis-Rüth FX; Grams F; Yiallouros I; Nar H; Küsthardt U; Zwilling R; Bode W; Stöcker W J Biol Chem; 1994 Jun; 269(25):17111-7. PubMed ID: 8006015 [TBL] [Abstract][Full Text] [Related]
5. Flexibility of the coordination geometry around the cupric ions in Cu(II)-rat dipeptidyl peptidase III is important for the expression of enzyme activity. Hirose J; Hata T; Kawaoka C; Ikeura T; Kitahara S; Horii K; Tomida H; Iwamoto H; Ono Y; Fukasawa KM Arch Biochem Biophys; 2012 Sep; 525(1):71-81. PubMed ID: 22683474 [TBL] [Abstract][Full Text] [Related]
6. [Coordination chemical studies on the zinc enzymes]. Hirose J Yakugaku Zasshi; 2014; 134(11):1109-24. PubMed ID: 25366909 [TBL] [Abstract][Full Text] [Related]
7. Copper Forms a PPII Helix-Like Structure with the Catalytic Domains of Bacterial Zinc Metalloproteases. Potok P; Kola A; Valensin D; Capdevila M; Potocki S Inorg Chem; 2023 Nov; 62(45):18425-18439. PubMed ID: 37909295 [TBL] [Abstract][Full Text] [Related]
9. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin. Menach E; Hashida Y; Yasukawa K; Inouye K Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667 [TBL] [Abstract][Full Text] [Related]
10. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin. Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658 [TBL] [Abstract][Full Text] [Related]
11. Identification of an Additional Metal-Binding Site in Human Dipeptidyl Peptidase III. Matić A; Šupljika F; Brkić H; Jurasović J; Karačić Z; Tomić S Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628928 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of zinc substitutions in the active site of thermolysin. Holland DR; Hausrath AC; Juers D; Matthews BW Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232 [TBL] [Abstract][Full Text] [Related]
13. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase. Martin CJ J Inorg Biochem; 1995 May; 58(2):89-107. PubMed ID: 7769385 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the metal-binding site in aminopeptidase B. Hirose J; Ohsaki T; Nishimoto N; Matuoka S; Hiromoto T; Yoshida T; Minoura T; Iwamoto H; Fukasawa KM Biol Pharm Bull; 2006 Dec; 29(12):2378-82. PubMed ID: 17142967 [TBL] [Abstract][Full Text] [Related]
15. High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue. Lo SY; Säbel CE; Webb MI; Walsby CJ; Siemann S J Inorg Biochem; 2014 Nov; 140():12-22. PubMed ID: 25042732 [TBL] [Abstract][Full Text] [Related]
16. Hunting the human DPP III active conformation: combined thermodynamic and QM/MM calculations. Tomić A; Tomić S Dalton Trans; 2014 Nov; 43(41):15503-14. PubMed ID: 25192149 [TBL] [Abstract][Full Text] [Related]
17. Phytic acid-enhanced metal ion exchange reactions: the effect on carboxypeptidase A. Martin CJ; Evans WJ J Inorg Biochem; 1989 Apr; 35(4):267-88. PubMed ID: 2496197 [TBL] [Abstract][Full Text] [Related]
18. Divalent metal derivatives of the hamster dihydroorotase domain. Huang DT; Thomas MA; Christopherson RI Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703 [TBL] [Abstract][Full Text] [Related]
19. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals. Chatterji D; Wu FY Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922 [TBL] [Abstract][Full Text] [Related]
20. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis. Kona F; Tao P; Martin P; Xu X; Gatti DL Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]