These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 22313032)
61. Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Kazanci M; Fratzl P; Klaushofer K; Paschalis EP Calcif Tissue Int; 2006 Nov; 79(5):354-9. PubMed ID: 17120187 [TBL] [Abstract][Full Text] [Related]
62. A spectroscopic study of the complexation reaction of trivalent lanthanides with a synthetic acrylate based PCE-superplasticizer. Fröhlich DR; Koke C; Maiwald MM; Chomyn C; Plank J; Panak PJ Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 207():270-275. PubMed ID: 30261430 [TBL] [Abstract][Full Text] [Related]
63. Thermodynamic and Structural Investigation of Synthetic Actinide-Peptide Scaffolds. Safi S; Jeanson A; Roques J; Solari PL; Charnay-Pouget F; Den Auwer C; Creff G; Aitken DJ; Simoni E Inorg Chem; 2016 Jan; 55(2):877-86. PubMed ID: 26727631 [TBL] [Abstract][Full Text] [Related]
64. Extended X-ray absorption fine structure investigation of adsorption and separation phenomena of metal ions in organic resin. Ikeda A; Yaita T; Okamoto Y; Shiwaku H; Suzuki S; Suzuki T; Fujii Y Anal Chem; 2007 Nov; 79(21):8016-23. PubMed ID: 17918914 [TBL] [Abstract][Full Text] [Related]
65. Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones. Meneghini C; Dalconi MC; Nuzzo S; Mobilio S; Wenk RH Biophys J; 2003 Mar; 84(3):2021-9. PubMed ID: 12609904 [TBL] [Abstract][Full Text] [Related]
66. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption spectroscopy investigations of the N3- complexation of Eu(III), Cm(III), and Am(III) in an ionic liquid: differences and similarities. Stumpf S; Billard I; Gaillard C; Panak PJ; Dardenne K Inorg Chem; 2008 Jun; 47(11):4618-26. PubMed ID: 18459761 [TBL] [Abstract][Full Text] [Related]
67. Characterizing the general chelating affinity of serum protein fetuin for lanthanides. Pallares RM; Panyala NR; Sturzbecher-Hoehne M; Illy MC; Abergel RJ J Biol Inorg Chem; 2020 Oct; 25(7):941-948. PubMed ID: 32910275 [TBL] [Abstract][Full Text] [Related]
68. Analytical separations of lanthanides and actinides by capillary electrophoresis. Janoš P Electrophoresis; 2003 Jun; 24(12-13):1982-1992. PubMed ID: 12858369 [TBL] [Abstract][Full Text] [Related]
69. Exploring actinide materials through synchrotron radiation techniques. Shi WQ; Yuan LY; Wang CZ; Wang L; Mei L; Xiao CL; Zhang L; Li ZJ; Zhao YL; Chai ZF Adv Mater; 2014 Dec; 26(46):7807-48. PubMed ID: 25169914 [TBL] [Abstract][Full Text] [Related]
70. Study of the U/Am separation with supported calix[6]arene in the aim of urinary actinides analysis. Poriel L; Boulet B; Cossonnet C; Bouvier-Capely C Radiat Prot Dosimetry; 2007; 127(1-4):273-6. PubMed ID: 17562653 [TBL] [Abstract][Full Text] [Related]
71. Density functional theory investigations of the homoleptic tris(dithiolene) complexes [M(dddt)(3)](-q) (q = 3, 2 ; M = Nd(3+) and U(3+/4+)) related to lanthanide(III)/actinide(III) differentiation. Meskaldji S; Belkhiri L; Arliguie T; Fourmigué M; Ephritikhine M; Boucekkine A Inorg Chem; 2010 Apr; 49(7):3192-200. PubMed ID: 20196548 [TBL] [Abstract][Full Text] [Related]
72. Application of parallel factor analysis for time-resolved laser fluorescence spectroscopy: implication for metal speciation study. Saito T; Sao H; Ishida K; Aoyagi N; Kimura T; Nagasaki S; Tanaka S Environ Sci Technol; 2010 Jul; 44(13):5055-60. PubMed ID: 20527776 [TBL] [Abstract][Full Text] [Related]
73. Sulfate complexation of trivalent lanthanides probed by nanoelectrospray mass spectrometry and time-resolved laser-induced luminescence. Vercouter T; Amekraz B; Moulin C; Giffaut E; Vitorge P Inorg Chem; 2005 Oct; 44(21):7570-81. PubMed ID: 16212383 [TBL] [Abstract][Full Text] [Related]
74. Sensitizing curium luminescence through an antenna protein to investigate biological actinide transport mechanisms. Sturzbecher-Hoehne M; Goujon C; Deblonde GJ; Mason AB; Abergel RJ J Am Chem Soc; 2013 Feb; 135(7):2676-83. PubMed ID: 23363005 [TBL] [Abstract][Full Text] [Related]
75. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. Verma D; Katti K; Katti D J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180 [TBL] [Abstract][Full Text] [Related]
76. Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach. Maxwell SL; Jones VD Talanta; 2009 Nov; 80(1):143-50. PubMed ID: 19782204 [TBL] [Abstract][Full Text] [Related]
77. EXAFS study of structural disorder in carbonate-containing hydroxyapatites. Harries JE; Hasnain SS; Shah JS Calcif Tissue Int; 1987 Dec; 41(6):346-50. PubMed ID: 2830003 [TBL] [Abstract][Full Text] [Related]
78. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. Hanaoka K; Kikuchi K; Kobayashi S; Nagano T J Am Chem Soc; 2007 Nov; 129(44):13502-9. PubMed ID: 17927176 [TBL] [Abstract][Full Text] [Related]
79. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems. Chergui M Acta Crystallogr A; 2010 Mar; 66(Pt 2):229-39. PubMed ID: 20164646 [TBL] [Abstract][Full Text] [Related]
80. A theoretical and experimental study of lead substitution in calcium hydroxyapatite. Ellis DE; Terra J; Warschkow O; Jiang M; González GB; Okasinski JS; Bedzyk MJ; Rossi AM; Eon JG Phys Chem Chem Phys; 2006 Feb; 8(8):967-76. PubMed ID: 16482339 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]