BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22313055)

  • 1. Development and validation of a spectrophotometric method for quantification of total glucosinolates in cruciferous vegetables.
    Gallaher CM; Gallaher DD; Peterson S
    J Agric Food Chem; 2012 Feb; 60(6):1358-62. PubMed ID: 22313055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucosinolates and derived products in cruciferous vegetables: total glucosinolates by retention on anion exchange resin and enzymatic hydrolysis to measure released glucose.
    VanEtten CH; Daxenbichler ME
    J Assoc Off Anal Chem; 1977 Jul; 60(4):946-9. PubMed ID: 893313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed.
    Cools K; Terry LA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jul; 901():115-8. PubMed ID: 22743340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656.
    Schreiner M; Krumbein A; Ruppel S
    J Mol Microbiol Biotechnol; 2009; 17(3):124-35. PubMed ID: 19556746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosinolates in the subantarctic crucifer Kerguelen cabbage (Pringlea antiscorbutica).
    Barillari J; Iori R; Rollin P; Hennion F
    J Nat Prod; 2005 Feb; 68(2):234-6. PubMed ID: 15730250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of 18 Intact Glucosinolates in
    Yu X; He H; Zhao X; Liu G; Hu L; Cheng B; Wang Y
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids.
    Vermeulen M; van den Berg R; Freidig AP; van Bladeren PJ; Vaes WH
    J Agric Food Chem; 2006 Jul; 54(15):5350-8. PubMed ID: 16848516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg cohort study.
    Steinbrecher A; Linseisen J
    Ann Nutr Metab; 2009; 54(2):87-96. PubMed ID: 19295191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of glucosinolates in pickling cruciferous vegetables.
    Suzuki C; Ohnishi-Kameyama M; Sasaki K; Murata T; Yoshida M
    J Agric Food Chem; 2006 Dec; 54(25):9430-6. PubMed ID: 17147429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of sinigrin in vegetable seeds by online microdialysis sampling coupled to reverse-phase ion-pair liquid chromatography.
    Lin TH; Huang JW; Kumar PV; Jen JF
    J Agric Food Chem; 2010 Apr; 58(8):4571-5. PubMed ID: 20329796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry.
    Cataldi TR; Rubino A; Lelario F; Bufo SA
    Rapid Commun Mass Spectrom; 2007; 21(14):2374-88. PubMed ID: 17590871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry.
    Lelario F; Bianco G; Bufo SA; Cataldi TR
    Phytochemistry; 2012 Jan; 73(1):74-83. PubMed ID: 22030302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin.
    Awasthi S; Saraswathi NT
    Int J Biol Macromol; 2016 Feb; 83():410-5. PubMed ID: 26571343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects.
    D'Antuono LF; Elementi S; Neri R
    Phytochemistry; 2008 Jan; 69(1):187-99. PubMed ID: 17669448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A colorimetric sensor array for the discrimination of glucosinolates.
    Kim SY; Seo HY; Ha JH
    Food Chem; 2020 Oct; 328():127149. PubMed ID: 32480264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of glucosinolates using their alkaline degradation and reaction with ferricyanide.
    Jezek J; Haggett BG; Atkinson A; Rawson DM
    J Agric Food Chem; 1999 Nov; 47(11):4669-74. PubMed ID: 10552869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables.
    Cámara-Martos F; Obregón-Cano S; Mesa-Plata O; Cartea-González ME; de Haro-Bailón A
    Food Chem; 2021 Mar; 339():127860. PubMed ID: 32866700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of two intact glucosinolates in vegetables and Chinese herbs.
    Cai Z; Cheung CY; Ma WT; Au WM; Zhang XY; Lee A
    Anal Bioanal Chem; 2004 Feb; 378(3):827-33. PubMed ID: 14647944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables.
    McNaughton SA; Marks GC
    Br J Nutr; 2003 Sep; 90(3):687-97. PubMed ID: 13129476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress.
    Getahun SM; Chung FL
    Cancer Epidemiol Biomarkers Prev; 1999 May; 8(5):447-51. PubMed ID: 10350441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.