BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22313425)

  • 1. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy.
    Torrens ON; Zheng M; Kikkawa JM
    Phys Rev Lett; 2008 Oct; 101(15):157401. PubMed ID: 18999637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound excitons in metallic single-walled carbon nanotubes.
    Deslippe J; Spataru CD; Prendergast D; Louie SG
    Nano Lett; 2007 Jun; 7(6):1626-30. PubMed ID: 17508770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions.
    Harrah DM; Schneck JR; Green AA; Hersam MC; Ziegler LD; Swan AK
    ACS Nano; 2011 Dec; 5(12):9898-906. PubMed ID: 22077149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast many-body bright-dark exciton transition in anatase TiO
    Wang A; Jiang X; Zheng Q; Petek H; Zhao J
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2307671120. PubMed ID: 37956295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for long-lived, optically generated quenchers of excitons in single-walled carbon nanotubes.
    Siitonen AJ; Bachilo SM; Tsyboulski DA; Weisman RB
    Nano Lett; 2012 Jan; 12(1):33-8. PubMed ID: 22142025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon Sidebands in Monolayer Transition Metal Dichalcogenides.
    Christiansen D; Selig M; Berghäuser G; Schmidt R; Niehues I; Schneider R; Arora A; de Vasconcellos SM; Bratschitsch R; Malic E; Knorr A
    Phys Rev Lett; 2017 Nov; 119(18):187402. PubMed ID: 29219604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between Emissive Defects on Carbon Nanotubes: Modeling Insights.
    Weight BM; Sifain AE; Gifford BJ; Kilin D; Kilina S; Tretiak S
    J Phys Chem Lett; 2021 Aug; 12(32):7846-7853. PubMed ID: 34380317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions.
    Siitonen AJ; Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2010 May; 10(5):1595-9. PubMed ID: 20377240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: The dark excitonic bottleneck.
    Seferyan HY; Nasr MB; Senekerimyan V; Zadoyan R; Collins P; Apkarian VA
    Nano Lett; 2006 Aug; 6(8):1757-60. PubMed ID: 16895369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton energy transfer in pairs of single-walled carbon nanotubes.
    Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A
    Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.
    Alfonsi J; Meneghetti M
    J Phys Condens Matter; 2012 Jun; 24(25):255501. PubMed ID: 22647714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.