These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22313450)

  • 1. Poly(ε-caprolactone)-banded spherulites and interaction with MC3T3-E1 cells.
    Wang K; Cai L; Jesse S; Wang S
    Langmuir; 2012 Mar; 28(9):4382-95. PubMed ID: 22313450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-driven surface segregation in a blend of poly(epsilon-caprolactone) and poly(vinyl chloride).
    Cheung ZL; Weng LT; Chan CM; Hou WM; Li L
    Langmuir; 2005 Aug; 21(17):7968-70. PubMed ID: 16089407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing methods of ultrathin poly(epsilon-caprolactone) films for tissue engineering applications.
    Tiaw KS; Teoh SH; Chen R; Hong MH
    Biomacromolecules; 2007 Mar; 8(3):807-16. PubMed ID: 17274653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition dependence of the crystallization behavior and morphology of the poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer.
    He C; Sun J; Ma J; Chen X; Jing X
    Biomacromolecules; 2006 Dec; 7(12):3482-9. PubMed ID: 17154478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent.
    Wu X; Wang S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4966-75. PubMed ID: 22889037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior.
    Wang K; Cai L; Zhang L; Dong J; Wang S
    Adv Healthc Mater; 2012 May; 1(3):292-301. PubMed ID: 23184743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer.
    He C; Sun J; Zhao T; Hong Z; Zhuang X; Chen X; Jing X
    Biomacromolecules; 2006 Jan; 7(1):252-8. PubMed ID: 16398522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity.
    Cai L; Wang S
    Biomaterials; 2010 Oct; 31(29):7423-34. PubMed ID: 20663551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(L-lactide) crystallization topography directs MC3T3-E1 cells response.
    Li W; Lu L; Jiao Y; Zhang C; Zhou C
    J Biomater Sci Polym Ed; 2016 Sep; 27(13):1317-30. PubMed ID: 27376548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the synthesis, crystallization, and morphology of poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers.
    He C; Sun J; Deng C; Zhao T; Deng M; Chen X; Jing X
    Biomacromolecules; 2004; 5(5):2042-7. PubMed ID: 15360322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS
    J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual types of spherulites in poly(octamethylene terephthalate) confined in thin-film growth.
    Chen YF; Woo EM; Li SH
    Langmuir; 2008 Oct; 24(20):11880-8. PubMed ID: 18823080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentric-ringed structures in polymer thin films.
    Wang Y; Chan CM; Li L; Ng KM
    Langmuir; 2006 Aug; 22(17):7384-90. PubMed ID: 16893242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamellar Assembly Mechanism on Dendritic Ring-Banded Spherulites of Poly(ε-caprolactone).
    Nagarajan S
    Macromol Rapid Commun; 2021 Oct; 42(20):e2100359. PubMed ID: 34491601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface nanopatterns of two types of banded spherulites in poly(nonamethylene terephthalate) thin films.
    Woo EM; Nurkhamidah S
    J Phys Chem B; 2012 Apr; 116(16):5071-9. PubMed ID: 22480354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P
    J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.