These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 22313618)
1. Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses. Jimenez-Roldan JE; Freedman RB; Römer RA; Wells SA Phys Biol; 2012 Feb; 9(1):016008. PubMed ID: 22313618 [TBL] [Abstract][Full Text] [Related]
2. Geometric simulation of flexible motion in proteins. Wells SA Methods Mol Biol; 2014; 1084():173-92. PubMed ID: 24061922 [TBL] [Abstract][Full Text] [Related]
3. An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins. Kirillova S; Cortés J; Stefaniu A; Siméon T Proteins; 2008 Jan; 70(1):131-43. PubMed ID: 17640073 [TBL] [Abstract][Full Text] [Related]
4. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. Ahmed A; Rippmann F; Barnickel G; Gohlke H J Chem Inf Model; 2011 Jul; 51(7):1604-22. PubMed ID: 21639141 [TBL] [Abstract][Full Text] [Related]
5. Constrained geometric simulation of diffusive motion in proteins. Wells S; Menor S; Hespenheide B; Thorpe MF Phys Biol; 2005 Nov; 2(4):S127-36. PubMed ID: 16280618 [TBL] [Abstract][Full Text] [Related]
6. A path planning approach for computing large-amplitude motions of flexible molecules. Cortés J; Siméon T; Ruiz de Angulo V; Guieysse D; Remaud-Siméon M; Tran V Bioinformatics; 2005 Jun; 21 Suppl 1():i116-25. PubMed ID: 15961448 [TBL] [Abstract][Full Text] [Related]
7. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses. Ahmed A; Villinger S; Gohlke H Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551 [TBL] [Abstract][Full Text] [Related]
8. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Wells SA; Crennell SJ; Danson MJ Proteins; 2014 Oct; 82(10):2657-70. PubMed ID: 24948467 [TBL] [Abstract][Full Text] [Related]
9. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Krebs WG; Alexandrov V; Wilson CA; Echols N; Yu H; Gerstein M Proteins; 2002 Sep; 48(4):682-95. PubMed ID: 12211036 [TBL] [Abstract][Full Text] [Related]
10. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. Naritomi Y; Fuchigami S J Chem Phys; 2011 Feb; 134(6):065101. PubMed ID: 21322734 [TBL] [Abstract][Full Text] [Related]
11. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Gohlke H; Kuhn LA; Case DA Proteins; 2004 Aug; 56(2):322-37. PubMed ID: 15211515 [TBL] [Abstract][Full Text] [Related]
12. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis. Alakent B; Doruker P; Camurdan MC J Chem Phys; 2004 Sep; 121(10):4759-69. PubMed ID: 15332910 [TBL] [Abstract][Full Text] [Related]
13. Predicting large-scale conformational changes in proteins using energy-weighted normal modes. Palmer DS; Jensen F Proteins; 2011 Oct; 79(10):2778-93. PubMed ID: 21905106 [TBL] [Abstract][Full Text] [Related]
14. A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Karaca E; Bonvin AM Structure; 2011 Apr; 19(4):555-65. PubMed ID: 21481778 [TBL] [Abstract][Full Text] [Related]
15. Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Tama F; Brooks CL Annu Rev Biophys Biomol Struct; 2006; 35():115-33. PubMed ID: 16689630 [TBL] [Abstract][Full Text] [Related]
16. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme. Horiuchi T; Go N Proteins; 1991; 10(2):106-16. PubMed ID: 1896424 [TBL] [Abstract][Full Text] [Related]
17. Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation. Macek P; Novak P; Zídek L; Sklenar V J Phys Chem B; 2007 May; 111(20):5731-9. PubMed ID: 17465536 [TBL] [Abstract][Full Text] [Related]
18. The subspace iteration method in protein normal mode analysis. Sedeh RS; Bathe M; Bathe KJ J Comput Chem; 2010 Jan; 31(1):66-74. PubMed ID: 19408277 [TBL] [Abstract][Full Text] [Related]
19. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution. Chen X; Sun Y; An X; Ming D J Chem Phys; 2011 Oct; 135(14):144108. PubMed ID: 22010699 [TBL] [Abstract][Full Text] [Related]
20. Normal modes and essential dynamics. Hayward S; de Groot BL Methods Mol Biol; 2008; 443():89-106. PubMed ID: 18446283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]