BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22313766)

  • 1. Streptomyces nodosus host strains optimized for polyene glycosylation engineering.
    Stephens N; Rawlings B; Caffrey P
    Biosci Biotechnol Biochem; 2012; 76(2):384-7. PubMed ID: 22313766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of polyene macrolide glycosylation: engineered biosynthesis of 19-(O)-perosaminyl-amphoteronolide B.
    Hutchinson E; Murphy B; Dunne T; Breen C; Rawlings B; Caffrey P
    Chem Biol; 2010 Feb; 17(2):174-82. PubMed ID: 20189107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of deoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus.
    Byrne B; Carmody M; Gibson E; Rawlings B; Caffrey P
    Chem Biol; 2003 Dec; 10(12):1215-24. PubMed ID: 14700629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics.
    Power P; Dunne T; Murphy B; Nic Lochlainn L; Rai D; Borissow C; Rawlings B; Caffrey P
    Chem Biol; 2008 Jan; 15(1):78-86. PubMed ID: 18215775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus.
    Murphy B; Anderson K; Borissow C; Caffrey P; Griffith G; Hearn J; Ibrahim O; Khan N; Lamburn N; Lee M; Pugh K; Rawlings B
    Org Biomol Chem; 2010 Aug; 8(16):3758-70. PubMed ID: 20571619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: impact on amphotericin biosynthesis and implications for glycosylation engineering.
    Nic Lochlainn L; Caffrey P
    Metab Eng; 2009 Jan; 11(1):40-7. PubMed ID: 18824121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of nystatin and amphotericin biosynthesis.
    Zotchev S; Caffrey P
    Methods Enzymol; 2009; 459():243-58. PubMed ID: 19362643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups.
    Carmody M; Murphy B; Byrne B; Power P; Rai D; Rawlings B; Caffrey P
    J Biol Chem; 2005 Oct; 280(41):34420-6. PubMed ID: 16079135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes.
    Caffrey P; Lynch S; Flood E; Finnan S; Oliynyk M
    Chem Biol; 2001 Jul; 8(7):713-23. PubMed ID: 11451671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered biosynthesis and characterisation of disaccharide-modified 8-deoxyamphoteronolides.
    Walmsley S; De Poire E; Rawlings B; Caffrey P
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1899-1905. PubMed ID: 27858138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP.
    Kim HJ; Kang SH; Choi SS; Kim ES
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5131-5137. PubMed ID: 28488115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Streptomyces noursei.
    Brautaset T; Sletta H; Nedal A; Borgos SE; Degnes KF; Bakke I; Volokhan O; Sekurova ON; Treshalin ID; Mirchink EP; Dikiy A; Ellingsen TE; Zotchev SB
    Chem Biol; 2008 Nov; 15(11):1198-206. PubMed ID: 19022180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthetic studies of amphotericins, candicidin and nystatin by means of mutation.
    Liu YT
    Proc Natl Sci Counc Repub China B; 1984 Apr; 8(2):182-6. PubMed ID: 6443786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering.
    Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered biosynthesis of disaccharide-modified polyene macrolides.
    De Poire E; Stephens N; Rawlings B; Caffrey P
    Appl Environ Microbiol; 2013 Oct; 79(19):6156-9. PubMed ID: 23913424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New nystatin-related antifungal polyene macrolides with altered polyol region generated via biosynthetic engineering of Streptomyces noursei.
    Brautaset T; Sletta H; Degnes KF; Sekurova ON; Bakke I; Volokhan O; Andreassen T; Ellingsen TE; Zotchev SB
    Appl Environ Microbiol; 2011 Sep; 77(18):6636-43. PubMed ID: 21764946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glucose limitation and specific mutations in the module 5 enoyl reductase domains in the nystatin and amphotericin polyketide synthases on polyene macrolide biosynthesis.
    Borgos SE; Sletta H; Fjaervik E; Brautaset T; Ellingsen TE; Gulliksen OM; Zotchev SB
    Arch Microbiol; 2006 Apr; 185(3):165-71. PubMed ID: 16416127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced amphotericin B production by genetically engineered Streptomyces nodosus.
    Huang K; Zhang B; Shen ZY; Cai X; Liu ZQ; Zheng YG
    Microbiol Res; 2021 Jan; 242():126623. PubMed ID: 33189073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High frequency transformation of the Amphotericin-producing bacterium Streptomyces nodosus.
    Nikodinovic J; Barrow KD; Chuck JA
    J Microbiol Methods; 2003 Oct; 55(1):273-7. PubMed ID: 14500018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques.
    Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P
    Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.