These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22313784)

  • 1. Characterization of a bacterial laminaribiose phosphorylase.
    Kitaoka M; Matsuoka Y; Mori K; Nishimoto M; Hayashi K
    Biosci Biotechnol Biochem; 2012; 76(2):343-8. PubMed ID: 22313784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of laminaribiose phosphorylase (EC 2.4 1.31) from Euglena gracilis Z.
    Kitaoka M; Sasaki T; Taniguchi H
    Arch Biochem Biophys; 1993 Aug; 304(2):508-14. PubMed ID: 8346926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides.
    Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H
    Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.
    Hamura K; Saburi W; Matsui H; Mori H
    Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM-1 towards Donor Substrates Glucose/Mannose 1-Phosphate by Using X-ray Crystallography and Saturation Transfer Difference NMR Spectroscopy.
    Kuhaudomlarp S; Walpole S; Stevenson CEM; Nepogodiev SA; Lawson DM; Angulo J; Field RA
    Chembiochem; 2019 Jan; 20(2):181-192. PubMed ID: 29856496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A laminaribiose-hydrolyzing enzyme, AkLab, from the common sea hare Aplysia kurodai and its transglycosylation activity.
    Kumagai Y; Satoh T; Inoue A; Ojima T
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Jan; 167():1-7. PubMed ID: 23912026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-O-α-D-glucopyranosyl-L-rhamnose phosphorylase from Clostridium phytofermentans.
    Nihira T; Nakai H; Kitaoka M
    Carbohydr Res; 2012 Mar; 350():94-7. PubMed ID: 22277537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization and Characterization of E. gracilis Extract with Enriched Laminaribiose Phosphorylase Activity for Bienzymatic Production of Laminaribiose.
    Müller C; Ortmann T; Abi A; Hartig D; Scholl S; Jördening HJ
    Appl Biochem Biotechnol; 2017 May; 182(1):197-215. PubMed ID: 27848198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transglycosylation Activity of Catalytic Domain Mutant of Endo-1,3-β-glucanase from Cellulosimicrobium cellulans.
    Hantani Y; Motoki S; Miyagawa A; Yamamura H; Oda M
    Protein Pept Lett; 2018; 25(8):734-739. PubMed ID: 29972101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase.
    Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA
    Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.
    Nakai H; Petersen BO; Westphal Y; Dilokpimol A; Abou Hachem M; Duus JØ; Schols HA; Svensson B
    Protein Eng Des Sel; 2010 Oct; 23(10):781-7. PubMed ID: 20713411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of 1,3-β-D-glucan phosphorylase from Ochromonas danica.
    Yamamoto Y; Kawashima D; Hashizume A; Hisamatsu M; Isono N
    Biosci Biotechnol Biochem; 2013; 77(9):1949-54. PubMed ID: 24018693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a cellobiose phosphorylase from a hyperthermophilic eubacterium, Thermotoga maritima MSB8.
    Rajashekhara E; Kitaoka M; Kim YK; Hayashi K
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2578-86. PubMed ID: 12596851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and characterization of chimeric enzymes of kojibiose phosphorylase and trehalose phosphorylase from Thermoanaerobacter brockii.
    Yamamoto T; Yamashita H; Mukai K; Watanabe H; Kubota M; Chaen H; Fukuda S
    Carbohydr Res; 2006 Oct; 341(14):2350-9. PubMed ID: 16872587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Laminaribiose Production Using an Immobilized Bienzymatic System in a Packed Bed Reactor.
    Abi A; Wang A; Jördening HJ
    Appl Biochem Biotechnol; 2018 Dec; 186(4):861-876. PubMed ID: 29766370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium.
    Kawai R; Igarashi K; Kitaoka M; Ishii T; Samejima M
    Carbohydr Res; 2004 Dec; 339(18):2851-7. PubMed ID: 15582611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paenibacillus sp. 598K 6-α-glucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from α-(1 → 4)-glucan.
    Ichinose H; Suzuki R; Miyazaki T; Kimura K; Momma M; Suzuki N; Fujimoto Z; Kimura A; Funane K
    Appl Microbiol Biotechnol; 2017 May; 101(10):4115-4128. PubMed ID: 28224195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.