These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22313807)

  • 1. Doped carbon nanotube networks for electrochemical filtration of aqueous phenol: electrolyte precipitation and phenol polymerization.
    Gao G; Vecitis CD
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1478-89. PubMed ID: 22313807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation.
    Liu H; Vajpayee A; Vecitis CD
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10054-66. PubMed ID: 24040859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into estrogenic activity removal using carbon nanotube electrochemical filter.
    Cunha GDS; Souza-Chaves BM; Bila DM; Bassin JP; Vecitis CD; Dezotti M
    Sci Total Environ; 2019 Aug; 678():448-456. PubMed ID: 31077923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides.
    Yang SY; Vecitis CD; Park H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1036-1043. PubMed ID: 28132189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport.
    Gao G; Vecitis CD
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6096-103. PubMed ID: 23106549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation.
    Vecitis CD; Schnoor MH; Rahaman MS; Schiffman JD; Elimelech M
    Environ Sci Technol; 2011 Apr; 45(8):3672-9. PubMed ID: 21388183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergism of ozonation and electrochemical filtration during advanced organic oxidation.
    Souza-Chaves BM; Dezotti M; Vecitis CD
    J Hazard Mater; 2020 Jan; 382():121085. PubMed ID: 31465946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube and diamond as electrochemical detectors in microchip and conventional capillary electrophoresis.
    Chen G
    Talanta; 2007 Dec; 74(3):326-32. PubMed ID: 18371646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels.
    Kwon T; Nishihara H; Itoi H; Yang QH; Kyotani T
    Langmuir; 2009 Oct; 25(19):11961-8. PubMed ID: 19746941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor.
    Körbahti BK; Tanyolaç A
    Water Res; 2003 Apr; 37(7):1505-14. PubMed ID: 12600378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter.
    Rahaman MS; Vecitis CD; Elimelech M
    Environ Sci Technol; 2012 Feb; 46(3):1556-64. PubMed ID: 22196381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.
    Wiggins-Camacho JD; Stevenson KJ
    Environ Sci Technol; 2011 Apr; 45(8):3650-6. PubMed ID: 21413761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron-doped diamond anodic treatment of olive mill wastewaters: statistical analysis, kinetic modeling and biodegradability.
    Chatzisymeon E; Xekoukoulotakis NP; Diamadopoulos E; Katsaounis A; Mantzavinos D
    Water Res; 2009 Sep; 43(16):3999-4009. PubMed ID: 19423147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phenol using Co- and Co,F-doped PbO(2) anodes in electrochemical filter-press cells.
    Andrade LS; Rocha-Filho RC; Bocchi N; Biaggio SR; Iniesta J; García-Garcia V; Montiel V
    J Hazard Mater; 2008 May; 153(1-2):252-60. PubMed ID: 17904737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of carbon nanotube-conducting polymer network for sensitive electrochemical immunoassay of Hepatitis B surface antigen in serum.
    Hu Y; Zhao Z; Wan Q
    Bioelectrochemistry; 2011 Jun; 81(2):59-64. PubMed ID: 21458390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.