These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 22313873)
1. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. Li CC; Li QH; Chen LB; Wang TH ACS Appl Mater Interfaces; 2012 Mar; 4(3):1233-8. PubMed ID: 22313873 [TBL] [Abstract][Full Text] [Related]
2. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. Wang YQ; Gu L; Guo YG; Li H; He XQ; Tsukimoto S; Ikuhara Y; Wan LJ J Am Chem Soc; 2012 May; 134(18):7874-9. PubMed ID: 22530994 [TBL] [Abstract][Full Text] [Related]
3. Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. Jiang YM; Wang KX; Wu XY; Zhang HJ; Bartlett BM; Chen JS ACS Appl Mater Interfaces; 2014 Nov; 6(22):19791-6. PubMed ID: 25333628 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous TiO₂ spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries. Trang NT; Ali Z; Kang DJ ACS Appl Mater Interfaces; 2015 Feb; 7(6):3676-83. PubMed ID: 25633801 [TBL] [Abstract][Full Text] [Related]
5. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375 [TBL] [Abstract][Full Text] [Related]
6. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670 [TBL] [Abstract][Full Text] [Related]
7. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries. Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405 [TBL] [Abstract][Full Text] [Related]
8. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes. Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243 [TBL] [Abstract][Full Text] [Related]
10. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries. Li J; Xiong S; Liu Y; Ju Z; Qian Y ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836 [TBL] [Abstract][Full Text] [Related]
11. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries. Yi TF; Fang ZK; Xie Y; Zhu YR; Yang SY ACS Appl Mater Interfaces; 2014 Nov; 6(22):20205-13. PubMed ID: 25330170 [TBL] [Abstract][Full Text] [Related]
12. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. Luo W; Hu X; Sun Y; Huang Y ACS Appl Mater Interfaces; 2013 Mar; 5(6):1997-2003. PubMed ID: 23432367 [TBL] [Abstract][Full Text] [Related]
13. Carbon-decorated Li₄Ti₅O₁₂/rutile TiO₂ mesoporous microspheres with nanostructures as high-performance anode materials in lithium-ion batteries. Gao L; Liu R; Hu H; Li G; Yu Y Nanotechnology; 2014 May; 25(17):175402. PubMed ID: 24722166 [TBL] [Abstract][Full Text] [Related]
14. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Jo MR; Jung YS; Kang YM Nanoscale; 2012 Nov; 4(21):6870-5. PubMed ID: 23026842 [TBL] [Abstract][Full Text] [Related]
15. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Kitta M; Akita T; Maeda Y; Kohyama M Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries. Wu HB; Lou XW; Hng HH Chemistry; 2012 Feb; 18(7):2094-9. PubMed ID: 22246679 [TBL] [Abstract][Full Text] [Related]
17. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries. Wang H; Huang H; Niu C; Rogach AL Small; 2015 Mar; 11(12):1364-83. PubMed ID: 25504364 [TBL] [Abstract][Full Text] [Related]
18. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Lin C; Fan X; Xin Y; Cheng F; Lai MO; Zhou H; Lu L Nanoscale; 2014 Jun; 6(12):6651-60. PubMed ID: 24816782 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. Qiu Y; Yan K; Yang S; Jin L; Deng H; Li W ACS Nano; 2010 Nov; 4(11):6515-26. PubMed ID: 21038869 [TBL] [Abstract][Full Text] [Related]
20. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]