BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 22314364)

  • 1. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.
    Jiang H; Ren Y; Yuen EY; Zhong P; Ghaedi M; Hu Z; Azabdaftari G; Nakaso K; Yan Z; Feng J
    Nat Commun; 2012 Feb; 3():668. PubMed ID: 22314364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling correlative roles of dopamine transporter (DAT) and Parkin in Parkinson's disease (PD) - A road to discovery?
    Jayaramayya K; Iyer M; Venkatesan D; Balasubramanian V; Narayanasamy A; Subramaniam MD; Cho SG; Vellingiri B
    Brain Res Bull; 2020 Apr; 157():169-179. PubMed ID: 32035946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis.
    Jiang H; Ren Y; Zhao J; Feng J
    Hum Mol Genet; 2004 Aug; 13(16):1745-54. PubMed ID: 15198987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations.
    Zhong P; Hu Z; Jiang H; Yan Z; Feng J
    Cell Rep; 2017 May; 19(5):1033-1044. PubMed ID: 28467897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells.
    Li H; Jiang H; Zhang B; Feng J
    J Parkinsons Dis; 2018; 8(4):479-493. PubMed ID: 30149462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parkin Maintains Robust Pacemaking in Human Induced Pluripotent Stem Cell-Derived A9 Dopaminergic Neurons.
    Pu J; Lin L; Jiang H; Hu Z; Li H; Yan Z; Zhang B; Feng J
    Mov Disord; 2023 Jul; 38(7):1273-1281. PubMed ID: 37166002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of Parkinson's disease-associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons.
    Giguère N; Pacelli C; Saumure C; Bourque MJ; Matheoud D; Levesque D; Slack RS; Park DS; Trudeau LÉ
    J Biol Chem; 2018 Jun; 293(25):9580-9593. PubMed ID: 29700116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkinson's disease in a dish - Using stem cells as a molecular tool.
    Badger JL; Cordero-Llana O; Hartfield EM; Wade-Martins R
    Neuropharmacology; 2014 Jan; 76 Pt A():88-96. PubMed ID: 24035919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons.
    Ren Y; Jiang H; Hu Z; Fan K; Wang J; Janoschka S; Wang X; Ge S; Feng J
    Stem Cells; 2015 Jan; 33(1):68-78. PubMed ID: 25332110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Absence of Parkin Does Not Promote Dopamine or Mitochondrial Dysfunction in PolgA
    Scott L; Karuppagounder SS; Neifert S; Kang BG; Wang H; Dawson VL; Dawson TM
    J Neurosci; 2022 Dec; 42(49):9263-9277. PubMed ID: 36280265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Naivetropic Induced Pluripotent Stem Cells from Parkinson's Disease Patients for High-Efficiency Genetic Manipulation and Disease Modeling.
    Hu Z; Pu J; Jiang H; Zhong P; Qiu J; Li F; Wang X; Zhang B; Yan Z; Feng J
    Stem Cells Dev; 2015 Nov; 24(21):2591-604. PubMed ID: 26218671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parkin suppresses the expression of monoamine oxidases.
    Jiang H; Jiang Q; Liu W; Feng J
    J Biol Chem; 2006 Mar; 281(13):8591-9. PubMed ID: 16455660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons.
    Rakovic A; Shurkewitsch K; Seibler P; Grünewald A; Zanon A; Hagenah J; Krainc D; Klein C
    J Biol Chem; 2013 Jan; 288(4):2223-37. PubMed ID: 23212910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of hypothalamic tuberoinfundibular dopamine neurons from acute toxicant exposure is dependent upon protein synthesis and associated with an increase in parkin and ubiquitin carboxy-terminal hydrolase-L1 expression.
    Benskey M; Behrouz B; Sunryd J; Pappas SS; Baek SH; Huebner M; Lookingland KJ; Goudreau JL
    Neurotoxicology; 2012 Jun; 33(3):321-31. PubMed ID: 22342763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological antagonism of kainate receptor rescues dysfunction and loss of dopamine neurons in a mouse model of human parkin-induced toxicity.
    Regoni M; Cattaneo S; Mercatelli D; Novello S; Passoni A; Bagnati R; Davoli E; Croci L; Consalez GG; Albanese F; Zanetti L; Passafaro M; Serratto GM; Di Fonzo A; Valtorta F; Ciammola A; Taverna S; Morari M; Sassone J
    Cell Death Dis; 2020 Nov; 11(11):963. PubMed ID: 33173027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration.
    Stevens DA; Lee Y; Kang HC; Lee BD; Lee YI; Bower A; Jiang H; Kang SU; Andrabi SA; Dawson VL; Shin JH; Dawson TM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11696-701. PubMed ID: 26324925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel neurodegenerative phenotypes in sporadic Parkinson's disease fibroblasts and midbrain dopamine neurons.
    Corenblum MJ; McRobbie-Johnson A; Carruth E; Bernard K; Luo M; Mandarino LJ; Peterson S; Sans-Fuentes MA; Billheimer D; Maley T; Eggers ED; Madhavan L
    Prog Neurobiol; 2023 Oct; 229():102501. PubMed ID: 37451330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.