These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 22314516)
1. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Seo DH; Jung JH; Ha SJ; Cho HK; Jung DH; Kim TJ; Baek NI; Yoo SH; Park CS Appl Microbiol Biotechnol; 2012 Jun; 94(5):1189-97. PubMed ID: 22314516 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Cho HK; Kim HH; Seo DH; Jung JH; Park JH; Baek NI; Kim MJ; Yoo SH; Cha J; Kim YR; Park CS Enzyme Microb Technol; 2011 Jul; 49(2):246-53. PubMed ID: 22112416 [TBL] [Abstract][Full Text] [Related]
3. Molecular Docking and Kinetic Studies of the A226N Mutant of Hong S; Siziya IN; Seo MJ; Park CS; Seo DH J Microbiol Biotechnol; 2020 Sep; 30(9):1436-1442. PubMed ID: 32522959 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Jung JH; Seo DH; Ha SJ; Song MC; Cha J; Yoo SH; Kim TJ; Baek NI; Baik MY; Park CS Carbohydr Res; 2009 Sep; 344(13):1612-9. PubMed ID: 19482267 [TBL] [Abstract][Full Text] [Related]
5. Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Lee HS; Kim TS; Parajuli P; Pandey RP; Sohng JK J Microbiol Biotechnol; 2018 Sep; 28(9):1447-1456. PubMed ID: 30369110 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence detection of the transglycosylation activity of amylosucrase. Seo DH; Jung JH; Park CS Anal Biochem; 2017 Sep; 532():19-25. PubMed ID: 28577993 [TBL] [Abstract][Full Text] [Related]
7. [Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin]. Wan Y; Ma J; Xu R; He A; Jiang M; Chen K; Jiang Y Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1450-9. PubMed ID: 23593869 [TBL] [Abstract][Full Text] [Related]
8. Batch-feeding whole-cell catalytic synthesis of α-arbutin by amylosucrase from Xanthomonas campestris. Zhu L; Jiang D; Zhou Y; Lu Y; Fan Y; Chen X J Ind Microbiol Biotechnol; 2019 Jun; 46(6):759-767. PubMed ID: 30820723 [TBL] [Abstract][Full Text] [Related]
9. Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis. Emond S; Mondeil S; Jaziri K; André I; Monsan P; Remaud-Siméon M; Potocki-Véronèse G FEMS Microbiol Lett; 2008 Aug; 285(1):25-32. PubMed ID: 18522649 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of hydroquinone fructoside using Leuconostoc mesenteroides levansucrase. Kang J; Kim YM; Kim N; Kim DW; Nam SH; Kim D Appl Microbiol Biotechnol; 2009 Jul; 83(6):1009-16. PubMed ID: 19294375 [TBL] [Abstract][Full Text] [Related]
11. An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Seo DH; Jung JH; Jung DH; Park S; Yoo SH; Kim YR; Park CS Enzyme Microb Technol; 2016 May; 86():7-16. PubMed ID: 26992787 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. Jang SW; Cho CH; Jung YS; Rha C; Nam TG; Kim DO; Lee YG; Baek NI; Park CS; Lee BH; Lee SY; Shin HS; Seo DH PLoS One; 2018; 13(11):e0207466. PubMed ID: 30452462 [TBL] [Abstract][Full Text] [Related]
13. Optimization of whole-cell biotransformation for scale-up production of α-arbutin from hydroquinone by the use of recombinant Escherichia coli. Zhu L; Xu M; Lu C; Chen L; Xu A; Fang J; Chen H; Lu Y; Fan Y; Chen X AMB Express; 2019 Jun; 9(1):94. PubMed ID: 31254161 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase. Kim GE; Lee JH; Jung SH; Seo ES; Jin SD; Kim GJ; Cha J; Kim EJ; Park KD; Kim D J Agric Food Chem; 2010 Sep; 58(17):9492-7. PubMed ID: 20687552 [TBL] [Abstract][Full Text] [Related]
15. Efficient biotransformation of naringenin to naringenin α-glucoside, a novel α-glucosidase inhibitor, by amylosucrase from Deinococcus wulumuquiensis. Yu SJ; So YS; Lim C; Cho CH; Lee SG; Yoo SH; Park CS; Lee BH; Min KH; Seo DH Food Chem; 2024 Aug; 448():139182. PubMed ID: 38569413 [TBL] [Abstract][Full Text] [Related]
16. Recent progress on biological production of α-arbutin. Zhu X; Tian Y; Zhang W; Zhang T; Guang C; Mu W Appl Microbiol Biotechnol; 2018 Oct; 102(19):8145-8152. PubMed ID: 30032433 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a novel sucrose phosphorylase from Paenibacillus elgii and its use in biosynthesis of α-arbutin. Su R; Zheng W; Li A; Wu H; He Y; Tao H; Zhang W; Zheng H; Zhao Z; Li S World J Microbiol Biotechnol; 2023 Dec; 40(1):24. PubMed ID: 38057640 [TBL] [Abstract][Full Text] [Related]
18. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae beta-glycosidase. Park NY; Baek NI; Cha J; Lee SB; Auh JH; Park CS Carbohydr Res; 2005 May; 340(6):1089-96. PubMed ID: 15797124 [TBL] [Abstract][Full Text] [Related]
19. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Chang TS; Wang TY; Yang SY; Kao YH; Wu JY; Chiang CM Molecules; 2019 Jun; 24(12):. PubMed ID: 31208027 [TBL] [Abstract][Full Text] [Related]
20. Heterologous expression of Deinococcus geothermalis amylosucrase in Corynebacterium glutamicum for luteolin glucoside production. Chin YW; Jang SW; Shin HS; Kim TW; Kim SK; Park CS; Seo DH Enzyme Microb Technol; 2020 Apr; 135():109505. PubMed ID: 32146930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]