These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 2231476)

  • 21. Appetitive and aversive learning in Spodoptera littoralis larvae.
    Salloum A; Colson V; Marion-Poll F
    Chem Senses; 2011 Oct; 36(8):725-31. PubMed ID: 21653242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral parabrachial nucleus lesions in the rat: aversive and appetitive gustatory conditioning.
    Reilly S; Trifunovic R
    Brain Res Bull; 2000 Jul; 52(4):269-78. PubMed ID: 10856824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient inactivation of the pigeon hippocampus or the nidopallium caudolaterale during extinction learning impairs extinction retrieval in an appetitive conditioning paradigm.
    Lengersdorf D; Stüttgen MC; Uengoer M; Güntürkün O
    Behav Brain Res; 2014 May; 265():93-100. PubMed ID: 24569011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera).
    Stollhoff N; Menzel R; Eisenhardt D
    J Neurosci; 2005 May; 25(18):4485-92. PubMed ID: 15872095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentiation of phototactic suppression in Hermissenda by a chemosensory stimulus during compound conditioning.
    Farley J; Reasoner H; Janssen M
    Behav Neurosci; 1997 Apr; 111(2):320-41. PubMed ID: 9106673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Olfactory conditioning of proboscis activity in Drosophila melanogaster.
    Chabaud MA; Devaud JM; Pham-Delègue MH; Preat T; Kaiser L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1335-48. PubMed ID: 16964495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Appetitive learning using visual conditioned stimuli in the pond snail, lymnaea.
    Andrew RJ; Savage H
    Neurobiol Learn Mem; 2000 May; 73(3):258-73. PubMed ID: 10775495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associative learning modifies the shortening reflex in the semi-intact leech Hirudo medicinalis: effects of pairing, predictability, and CS preexposure.
    Sahley CL; Boulis NM; Schurman B
    Behav Neurosci; 1994 Apr; 108(2):340-6. PubMed ID: 8037878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning in cod (Gadus morhua): long trace interval retention.
    Nilsson J; Kristiansen TS; Fosseidengen JE; Fernö A; van den Bos R
    Anim Cogn; 2008 Apr; 11(2):215-22. PubMed ID: 17647031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro odor-aversion conditioning in a terrestrial mollusk.
    Inoue T; Murakami M; Watanabe S; Inokuma Y; Kirino Y
    J Neurophysiol; 2006 Jun; 95(6):3898-903. PubMed ID: 16495363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous conditioning in honeybees (Apis mellifera).
    Batson JD; Hoban JS; Bitterman ME
    J Comp Psychol; 1992 Jun; 106(2):114-9. PubMed ID: 1600718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).
    Aquino IS; Abramson CI; Soares AE; Fernandes AC; Benbassat D
    Psychol Rep; 2004 Jun; 94(3 Pt 2):1221-31. PubMed ID: 15362396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.
    Muthusamy N; Zhang X; Johnson CA; Yadav PN; Ghashghaei HT
    Nat Neurosci; 2017 Jan; 20(1):20-23. PubMed ID: 27918532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory conditioning in the zebrafish (Danio rerio).
    Braubach OR; Wood HD; Gadbois S; Fine A; Croll RP
    Behav Brain Res; 2009 Mar; 198(1):190-8. PubMed ID: 19056431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of responding to A after A+/AX+ training: challenges for a comparator theory of learning.
    Esber GR; Pearce JM; Haselgrove M
    J Exp Psychol Anim Behav Process; 2009 Oct; 35(4):485-97. PubMed ID: 19839701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taste-potentiated odor aversion learning: role of the amygdaloid basolateral complex and central nucleus.
    Hatfield T; Graham PW; Gallagher M
    Behav Neurosci; 1992 Apr; 106(2):286-93. PubMed ID: 1317183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning.
    Woods AM; Bouton ME
    Learn Mem; 2008 Dec; 15(12):909-20. PubMed ID: 19050163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Appetitive conditioning: neural bases and implications for psychopathology.
    Martin-Soelch C; Linthicum J; Ernst M
    Neurosci Biobehav Rev; 2007; 31(3):426-40. PubMed ID: 17210179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acquisition of conditioned associations in Hermissenda: additive effects of contiguity and the forward interstimulus interval.
    Matzel LD; Schreurs BG; Lederhendler I; Alkon DL
    Behav Neurosci; 1990 Aug; 104(4):597-606. PubMed ID: 2206429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.