These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22314910)

  • 1. Hydrostatic and osmotic pressure study of the RNA hydration.
    Giel-Pietraszuk M; Barciszewski J
    Mol Biol Rep; 2012 May; 39(5):6309-18. PubMed ID: 22314910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of high hydrostatic pressure on hydration and activity of ribozymes.
    Giel-Pietraszuk M; Fedoruk-Wyszomirska A; Barciszewski J
    Mol Biol Rep; 2010 Dec; 37(8):3713-9. PubMed ID: 20204525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High hydrostatic pressure approach proves RNA catalytic activity without magnesium.
    Fedoruk-Wyszomirska A; Wyszko E; Giel-Pietraszuk M; Barciszewska MZ; Barciszewski J
    Int J Biol Macromol; 2007 Jun; 41(1):30-5. PubMed ID: 17222901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P.
    Thomas BC; Chamberlain J; Engelke DR; Gegenheimer P
    RNA; 2000 Apr; 6(4):554-62. PubMed ID: 10786846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic RNA reactions of yeast tRNA(Phe) fragments.
    Deng HY; Termini J
    Biochemistry; 1992 Nov; 31(43):10518-28. PubMed ID: 1329951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between three-dimensional structure and chemical reactivity of transfer RNA.
    Robertus JD; Ladner JE; Finch JT; Rhodes D; Brown RS; Clark BF; Klug A
    Nucleic Acids Res; 1974 Jul; 1(7):927-32. PubMed ID: 10793725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small metalloribozyme with a two-step mechanism.
    Pan T; Uhlenbeck OC
    Nature; 1992 Aug; 358(6387):560-3. PubMed ID: 1501711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of acidic hydrolysis of esters explains the HDV ribozyme activity.
    Fedoruk-Wyszomirska A; Giel-Pietraszuk M; Wyszko E; Szymański M; Ciesiołka J; Barciszewska MZ; Barciszewski J
    Mol Biol Rep; 2009 Sep; 36(7):1647-50. PubMed ID: 18810653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific hydrolysis of yeast tRNA(Phe) mediated by metal-free bleomycin.
    Keck MV; Hecht SM
    Biochemistry; 1995 Sep; 34(37):12029-37. PubMed ID: 7547941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific hydrolysis of yeast tRNAPhe by anthraquinone-glycine and anthraquinone-iminodiacetate conjugates.
    Endo M; Hirata K; Inokawa T; Matsumura K; Komiyama M; Ihara T; Sueda S; Takagi M
    Nucleic Acids Symp Ser; 1995; (34):109-10. PubMed ID: 8841576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the leadzyme at 1.8 A resolution: metal ion binding and the implications for catalytic mechanism and allo site ion regulation.
    Wedekind JE; McKay DB
    Biochemistry; 2003 Aug; 42(32):9554-63. PubMed ID: 12911297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nature of conformational changes of yeast tRNA(Phe). High hydrostatic pressure effects.
    Giel-Pietraszuk M; Barciszewski J
    Int J Biol Macromol; 2005 Nov; 37(3):109-14. PubMed ID: 16236354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water counting: quantitating the hydration level of paramagnetic metal ions bound to nucleotides and nucleic acids.
    Hoogstraten CG; Britt RD
    RNA; 2002 Feb; 8(2):252-60. PubMed ID: 11911370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm.
    Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G
    RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping.
    Chow CS; Behlen LS; Uhlenbeck OC; Barton JK
    Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the magnesium, europium and lead binding sites in E. coli and lupine tRNAPhe by specific metal ion-induced cleavages.
    Marciniec T; Ciesiołka J; Wrzesinski J; Krzyzosiak WJ
    FEBS Lett; 1989 Jan; 243(2):293-8. PubMed ID: 2645170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe T Psi C domain.
    Koshlap KM; Guenther R; Sochacka E; Malkiewicz A; Agris PF
    Biochemistry; 1999 Jul; 38(27):8647-56. PubMed ID: 10393540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering.
    Fang X; Littrell K; Yang XJ; Henderson SJ; Siefert S; Thiyagarajan P; Pan T; Sosnick TR
    Biochemistry; 2000 Sep; 39(36):11107-13. PubMed ID: 10998249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes and dynamics of tRNAs: evidence from hydrolysis patterns.
    Dock-Bregeon AC; Moras D
    Cold Spring Harb Symp Quant Biol; 1987; 52():113-21. PubMed ID: 3331337
    [No Abstract]   [Full Text] [Related]  

  • 20. Folding of circularly permuted transfer RNAs.
    Pan T; Gutell RR; Uhlenbeck OC
    Science; 1991 Nov; 254(5036):1361-4. PubMed ID: 1720569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.