These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 22315424)
21. Loss of aurora A/STK15/BTAK overexpression correlates with transition of in situ to invasive ductal carcinoma of the breast. Hoque A; Carter J; Xia W; Hung MC; Sahin AA; Sen S; Lippman SM Cancer Epidemiol Biomarkers Prev; 2003 Dec; 12(12):1518-22. PubMed ID: 14693746 [TBL] [Abstract][Full Text] [Related]
22. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Latta EK; Tjan S; Parkes RK; O'Malley FP Mod Pathol; 2002 Dec; 15(12):1318-25. PubMed ID: 12481013 [TBL] [Abstract][Full Text] [Related]
23. Maintenance of DNA content and erbB-2 alterations in intraductal and invasive phases of mammary cancer. Iglehart JD; Kerns BJ; Huper G; Marks JR Breast Cancer Res Treat; 1995 Jun; 34(3):253-63. PubMed ID: 7579490 [TBL] [Abstract][Full Text] [Related]
24. Expression of glycodelin protein and mRNA in human ductal breast cancer carcinoma in situ, invasive ductal carcinomas, their lymph node and distant metastases, and ductal carcinomas with recurrence. Jeschke U; Mylonas I; Kunert-Keil C; Dazert E; Shabani N; Werling M; Kuhn C; Janni W; Gerber B; Friese K Oncol Rep; 2005 Mar; 13(3):413-9. PubMed ID: 15706409 [TBL] [Abstract][Full Text] [Related]
25. MicroRNA-132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation. Li S; Meng H; Zhou F; Zhai L; Zhang L; Gu F; Fan Y; Lang R; Fu L; Gu L; Qi L Pathol Res Pract; 2013 Mar; 209(3):179-83. PubMed ID: 23399321 [TBL] [Abstract][Full Text] [Related]
26. PIK3CA mutations in ductal carcinoma in situ and adjacent invasive breast cancer. Agahozo MC; Sieuwerts AM; Doebar SC; Verhoef EI; Beaufort CM; Ruigrok-Ritstier K; de Weerd V; Sleddens HFBM; Dinjens WNM; Martens JWM; van Deurzen CHM Endocr Relat Cancer; 2019 May; 26(5):471-482. PubMed ID: 30844755 [TBL] [Abstract][Full Text] [Related]
27. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. Krstic M; Kolendowski B; Cecchini MJ; Postenka CO; Hassan HM; Andrews J; MacMillan CD; Williams KC; Leong HS; Brackstone M; Torchia J; Chambers AF; Tuck AB J Pathol; 2019 Jun; 248(2):191-203. PubMed ID: 30697731 [TBL] [Abstract][Full Text] [Related]
28. Possible Prognostic Role of HER2/Neu in Ductal Carcinoma In Situ and Atypical Ductal Proliferative Lesions of the Breast. Daoud SA; Ismail WM; Abdelhamid MS; Nabil TM; Daoud SA Asian Pac J Cancer Prev; 2016; 17(8):3733-6. PubMed ID: 27644608 [TBL] [Abstract][Full Text] [Related]
29. Expression of c-erbB-2 in in situ and in adjacent invasive ductal adenocarcinomas of the female breast. Maguire HC; Hellman ME; Greene MI; Yeh I Pathobiology; 1992; 60(3):117-21. PubMed ID: 1352687 [TBL] [Abstract][Full Text] [Related]
30. Regulation of in situ to invasive breast carcinoma transition. Hu M; Yao J; Carroll DK; Weremowicz S; Chen H; Carrasco D; Richardson A; Violette S; Nikolskaya T; Nikolsky Y; Bauerlein EL; Hahn WC; Gelman RS; Allred C; Bissell MJ; Schnitt S; Polyak K Cancer Cell; 2008 May; 13(5):394-406. PubMed ID: 18455123 [TBL] [Abstract][Full Text] [Related]
31. Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Shin SJ; Simpson PT; Da Silva L; Jayanthan J; Reid L; Lakhani SR; Rosen PP Am J Surg Pathol; 2009 Apr; 33(4):496-504. PubMed ID: 19047897 [TBL] [Abstract][Full Text] [Related]
32. [Establishing a cytogenetic and morphological progression models of invasive breast cancer. Comparative genomic hybridization (CGH) in malignant and premalignant tumors of the female breast]. Bürger H; Poremba C; Diallo R; Dockhorn-Dworniczak B; Böcker W Pathologe; 2000 Sep; 21(5):375-82. PubMed ID: 11092010 [TBL] [Abstract][Full Text] [Related]
33. Comparative analysis of loss of heterozygosity and expression profile in normal tissue, DCIS and invasive breast cancer. Zikan M; Bohm J; Pavlista D; Cibula D Clin Transl Oncol; 2011 Sep; 13(9):652-5. PubMed ID: 21865136 [TBL] [Abstract][Full Text] [Related]
34. Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. Ayala de la Peña F; Kanasaki K; Kanasaki M; Tangirala N; Maeda G; Kalluri R J Biol Chem; 2011 Jun; 286(23):20778-87. PubMed ID: 21388952 [TBL] [Abstract][Full Text] [Related]
35. Targeting of CCBE1 by miR-330-3p in human breast cancer promotes metastasis. Mesci A; Huang X; Taeb S; Jahangiri S; Kim Y; Fokas E; Bruce J; Leong HS; Liu SK Br J Cancer; 2017 May; 116(10):1350-1357. PubMed ID: 28419078 [TBL] [Abstract][Full Text] [Related]
36. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Schuetz CS; Bonin M; Clare SE; Nieselt K; Sotlar K; Walter M; Fehm T; Solomayer E; Riess O; Wallwiener D; Kurek R; Neubauer HJ Cancer Res; 2006 May; 66(10):5278-86. PubMed ID: 16707453 [TBL] [Abstract][Full Text] [Related]
37. Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Seth A; Kitching R; Landberg G; Xu J; Zubovits J; Burger AM Anticancer Res; 2003; 23(3A):2043-51. PubMed ID: 12894577 [TBL] [Abstract][Full Text] [Related]
38. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Elsarraj HS; Hong Y; Valdez KE; Michaels W; Hook M; Smith WP; Chien J; Herschkowitz JI; Troester MA; Beck M; Inciardi M; Gatewood J; May L; Cusick T; McGinness M; Ricci L; Fan F; Tawfik O; Marks JR; Knapp JR; Yeh HW; Thomas P; Carrasco DR; Fields TA; Godwin AK; Behbod F Breast Cancer Res; 2015 Sep; 17():128. PubMed ID: 26384318 [TBL] [Abstract][Full Text] [Related]
39. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Vargas AC; McCart Reed AE; Waddell N; Lane A; Reid LE; Smart CE; Cocciardi S; da Silva L; Song S; Chenevix-Trench G; Simpson PT; Lakhani SR Breast Cancer Res Treat; 2012 Aug; 135(1):153-65. PubMed ID: 22718308 [TBL] [Abstract][Full Text] [Related]
40. Functional Role of miRNAs in the Progression of Breast Ductal Carcinoma in Situ. Hannafon BN; Ding WQ Am J Pathol; 2019 May; 189(5):966-974. PubMed ID: 30273605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]